Síndrome do desfiladeiro torácico.

Publicado em: 15 de maio de 2020 por Dr. José Carlos Garcia Jr.
Categorias: Capítulos de Livros


Autores : José Carlos Garcia Jr e Diogo Bader

Livro: Doenças do Ombro, Editora: Di Livros, Cidade: Rio de Janeiro, Editor: Dr. Arildo Paim,

Ainda em processo de publicação

Nervo supra escapular

Publicado em: 15 de maio de 2020 por Dr. José Carlos Garcia Jr.
Categorias: Capítulos de Livros

Autores: José Carlos Garcia Jr e Eduardo Ferreira Cordeiro

Livro: Doenças do Ombro,Editora: Di Livros, Cidade: Rio de Janeiro, Editor: Dr. Arildo Paim,

Ainda em processo de publicação

Radiologia do Cotovelo

Publicado em: 15 de maio de 2020 por Dr. José Carlos Garcia Jr.
Categorias: Capítulos de Livros

*Brazilian Society for Shoulder and Elbow Surgery pg 257-268 Revinter, Rio de Janeiro, 2005.

Cirurgia de Bristow-Latarjet Artroscópica.

Publicado em: 15 de maio de 2020 por Dr. José Carlos Garcia Jr.
Categorias: Capítulos de Livros

GARCIA, J. C.; CORDEIRO, EDUARDO F. ; MELLO, M. B. D. E. . Da Simulação à Prática: Cirurgia do Ombro. 1ed.Rio de Janeiro: Elsevier, 2019, v. 1, p. 71-76.

Introdução

A instabilidade anterior do ombro é conhecida como uma das condições patológicas mais comuns do ombro(1).

Entre as varias técnicas cirúrgicas disponíveis para se tratar a instabilidade anterior do ombro, uma das mais efetivas e conhecidas é a transferência do processo coracóide com o tendão conjunto para a borda anterior da cavidade glenoidal(2).

Walter Rowley Bristow referiu a um tratamento cirúrgico da instabilidade anterior recorrente do ombro antes de 1929, contudo sem muitos detalhes da técnica cirúrgica(3). Essa técnica foi melhor relatada por Helfet em 1958. No artigo original ele descreveu a técnica cirúrgica que aprendeu antes de 1939 com seu professor Bristow na Inglaterra(4)

Em 1954, Michel Latarjet foi quem estabeleceu os conceitos modernos dessa cirurgia com o uso de um parafuso para a fixação do processo coracóide e com a divisão na orientação horizontal do subescapular (5).  Alguns autores normalmente relatam que Didier Patte(6) foi quem teve a ideia da abertura do subescapular de forma paralela às fibras, contudo Michel Latarjet também citou essa possível abordagem(5).

Didier Patte popularizou a técnica com modificações como o uso de enxerto do processo coracóide na posição vertical e a fixação com dois parafusos(6).

Os princípios de estabilização dessa técnica são três, a saber:

  • O tendão conjunto agindo como um restritor ligamentar
  • O tensionamento do subescapular quando o ombro está em abdução e rotação externa 
  • O bloqueio ósseo do enxerto coracóide(7)

A transferência do enxerto de processo coracóide com o tendão conjunto para a borda anterior da cavidade glenoidal vem sendo modificada por vários autores, mas sempre respeitando os princípios estabelecidos por Bristow e Latarjet. Quase todas as modificações tem apresentado bons resultados e algumas complicações em comum, sendo as mais comuns a perda de rotação externa, osteoartorse, dor, lesão do nervo musculocutâneo e pseudoartrose(8).

Tais complicações tem levado muitos cirurgiões a evitar esse procedimento, preferindo o retensionamento capsular associado à reconstrução labral.

A cirurgia de Bristow-Latarjet foi consequentemente relegada apenas a casos de instabilidade com extensa perda óssea, lesões tipo HAGHL (Avulsão Umeral do Ligamento Glenoumeral), falha nas cirurgias capsulares e em casos envolvendo atletas de alto impacto(7). Contudo, em algumas partes do mundo esse procedimento continua sendo a primeira escolha de tratamento para a instabilidade anterior do ombro, independente da circunstancia.

Recentemente, uma técnica artroscópica foi criada para abordagem minimamente invasiva da cirurgia de Bristow-Latarjet. Assim, através de uma visão intra-articular, o cirurgião foi capaz de posicionar melhor o enxerto, evitando alguns dos possíveis problemas relacionados ao mal posicionamento, como recidiva de luxação, quando medializado demais o enxerto,  e osteoartrose, quando o mesmo é excessivamente lateralizado.  

A visualização do ponto de inserção pode também ter a vantagem de garantir a presença de osso esponjoso na área de contato, permitindo uma melhor fixação(7,9,10).

Contudo, tal nova abordagem desse antigo procedimento requer novos instrumentos, aumentando os custos da cirurgia.

Em 2009, uma técnica cirúrgica foi apresentada por este autor, permitindo a realização desse procedimento minimamente invasivo usando apenas materiais normais de artroscopia e um parafuso(1).

O autor e seus colaboradores já realizaram essa técnica em 57 ombros.

Critérios para escolha do procedimento   

O critério clinico é variável ao redor do mundo. Para alguns serviços, principalmente na França, esta é a única opção. Por outro lado, minha preferencia é a cirurgia de Bankart artroscópica, exceto nos seguintes casos:

Bankart ósseo comprometendo 20% ou mais da cavidade glenoidal (avaliados com RNM, TC ou ambos, usando a porcentagem do diâmetro da circunferência inferior da glenóide, na direção que apresenta a perda óssea mais importante)

Acoplamento da lesão de Hill Sachs na glenóide anterior.

Lesão tipo HAGHL

Falha de reconstrução labral previa

Pacientes apresentando uma pontuação maior que seis no índice de severidade da instabilidade(11).

Características da Imagem

Bigliani et al classificou perdas ósseas em 3 tipos(12). Dentro do tipo 3 tem uma subclassificação em A (menos de 25% de perda glenoidal) e B (mais de 25% de perda glenoidal) introduzindo o conceito de perda óssea. Bigliani sugeriu que nos casos 3B, procedimentos apenas de partes moles não seriam suficientes para estabilizar o ombro, sendo necessária uma solução óssea. Contudo estudos recentes de Itoi et al sugerem que a lesão maior que 21% da glenóide diminui 50% da estabilidade intrínseca da glenóide com perda de 50% de sua profundidade(13,14). Ele também sugeriu que esse tamanho de déficit seria o mesmo evidenciado com 18% de perda óssea encontrado com radiografias na incidência de West Point.

Consequentemente o autor acredita que a perdas a partir de 20% é de melhor indicação do que perdas a partir de 25% da glenóide anterior para escolha do procedimento de Bristow-Latarjet.

É preciso ter cuidado também com o tamanho do “glenoid track”(15). Se a perda da glenóide é menor do que 20%, mas o paciente apresenta uma extensa lesão de Hill Sachs com possibilidade de acoplamento, isso pode ser um fator a levar os cirurgiões a preferirem a cirurgia de Bristow-Latarjet em detrimento de procedimentos de partes moles isolados.

O acoplamento estará presente em casos nos quais a lesão de Hill Sachs são mediais a 84% do diâmetro da cavidade glenoidal, medindo da margem medial do “footprint” do manguito rotador(16).

Técnica Cirúrgica

Entendemos essa técnica como tendo três passos:  

Primeiro passo: expor e preparar a borda anterior da glenóide e o processo coracóide.

O paciente é colocado em posição de cadeira de praia sob anestesia geral com os membros superiores livres.

Um portal posterior padrão é realizado e o artroscópio introduzido. Uma bomba de infusão com pressão de 40mmHg é utilizado. Não há controle de pressão arterial do paciente durante o procedimento, a não ser em caos de taxas pressóricas muito altas que podem potencialmente comprometer a cirurgia.

Inspeção artroscópica é realizada e um portal abaixo do triangulo anterior, através do subescapular, é estabelecido. Esse portal anterior modificado é inferior e medial ao portal anterior tradicional. Sua melhor localização pode ser  achada com o uso de um agulha vendo o posicionamento direto. A agulha é colocada no mesmo local em que o cirurgião vai inserir o parafuso. Se o cirurgião estiver com medo de lesionar o nervo axilar, sua integridade pode ser confirmada pela visualização artroscópica com a óptica inserida no portal lateral, sendo algumas vezes até o nervo musculocutaneo visualizado. Depois de acessada a articulação e identificada a lesão óssea de Perthes-Bankart, a borda anterior da glenóide é preparada com shaver ósseo e de partes moles. O intervalo rotador e o ligamento coracoumeral são removidos e a parte lateral do processo coracóide é exposta. A remoção de parte da capsula anterior pode ser feita se necessária para obter melhor exposição .

A câmera é inserida pelo portal lateral, localizado apenas 1 cm posterior à borda anterolateral do acrômio, para uma visualização direta do processo coracóide, do tendão conjunto e do ligamento coracoacromial (LCA), podendo-se utilizar uma agulha para confirmar a melhor posição do portal. O LCA é então solto da ponta do coracóide usando eletrocautério pelo portal anterior modificado, e o lado lateral do processo coracóide é limpo.

Segundo passo: Medição

Volta-se a câmera para o portal posterior e inicia-se a abertura do subescapular na direção de suas fibras. Isso é feito com uma pinça tipo Kelly através do portal anterior modificado. Deve-se ter cuidado na introdução de instrumental no acesso afim de se evitarem lesões neurais. O eletrocautério pode ser usado nesse momento. O Kelly é introduzido pelo portal anterior modificado e o subescapular aberto do lado bursal para o lado articular, assim como na cirurgia aberta. O tendão é amplamente aberto no meio do tendão (fig.1). O nervo axilar está perto, mas sua lesão não é comum, assim como no procedimento aberto(8).

Para medir o comprimento do parafuso, use o procedimento a seguir.

O portal anterior modificado é usado para introduzir uma broca de 2.5 a 3.5 mm no defeito ósseo anterior, exatamente onde o parafuso será inserido, na mesma direção, pela abertura do subescapular. Isso é feito com visualização direta, com a óptica no portal lateral e a broca em uma posição perpendicular à área preparada da borda anterior da glenóide. A perfuração deve ser feita a pelo menos 5 a 6 mm abaixo no equador da cabeça umeral, para evitar novas luxações.

Uma proteção para broca pode ser utilizada para evitar lesão nervosa. Há um guia no instrumental de perda óssea daArthrex®(Naples-Fl-USA) que pode ser utilizado para fazer essa passo de forma mais segura. Contudo, na maior parte dos nossos procedimentos, nós apenas protegemos a pele, deltoide e tendão conjunto, uma vez que com visualização direta consideramos ter segurança suficiente para não lesar estruturas neurovasculares. Algumas vezes o tendão conjunto pode se medializado com proteções, permitindo melhor posicionamento. Devido à solução salina usada durante a artroscopia, o subescapular não é afetado pela perfuração.

A broca é inserida, podendo ser de 2,5 a 3,5mm, dependendo do diâmetro do coracóide, até que a cortical posterior da escapula possa ser sentida. A distancia da perfuração até a borda da cavidade glenoidal é ao redor de 6mm(14). Isso pode ser medico com um “probe”. Sua ponta é medida com uma régua cirúrgica e assim usado para mensurar a distancia.

O comprimento do coracóide é maior no eixo horizontal do que no vertical, então pequenas correções podem também ser feitas rodando-se o enxerto. Depois, uma segunda broca igual é colocada junto à primeira, sem perfurar, apenas para realizar medição, sendo o comprimento da glenóide a diferença encontrada, sendo possível pequena diferença de tamanho nessa medição. 

A câmera é novamente inserida no portal lateral.

Para encontrar a melhor posição de portal para a osteotomia, um jelco 14 pode ser usado. É lateral ao coracóide, bem perto da clavícula. A visão direta é a melhor forma de decidir o ponto certo para a osteotomia. Esse portal permite também o melhor acesso para a ponta superior do coracóide (portal coracóide superior – PCS). O peitoral menor e a fáscia são também desinseridos usand esse portal com o eletrocautério.

Se o cirurgião quiser usar 2 parafusos é recomendável utilizar instrumentos especiais desenvolvidos por Lafosse et al e sua sistematização a partir desse passo(7).

Uma pequena serra de nitrogênio é inserida pelo PCS e o coracóide é cuidadosamente cortado. Algumas vezes um osteótomo comum pode ser usado para isso. A direção da osteotomia é vertical ao coracóide. O risco de quebra do osso é evitado com o uso da serra de nitrogênio. O coracóide com o tendão conjunto são puxados para fora do corpo com o uso de um Kocher pelo portal anterior (fig. 2). Qualquer irregularidade do enxerto coracóide é corrigida para melhorar o contato da superfície cruenta. Um furo é realizado no coracóide com uma broca de 2.5mm a 3.5 mm, em seu eixo horizontal. O comprimento do coracóide é então medido.

Se a preferencia do cirurgião for a de usar o enxerto no eixo vertical, o coracóide pode ser cruentizado em sua parte inferior antes da osteotomia.  Um portal extra deve ser feito para a colocação do parafuso de superior para inferior. A melhor posição desse portal é exatamente acima do coracóide, na posição em que o parafuso será inserido. Isso pode ser melhor definido com uso de uma agulha, sob visualização direta. Esse portal também será bem perto da clavícula. 

O parafuso é inserido junto com a arroela amarrados e um fio de polyester sintético multifilamentar número 5 (fig. 3). Faz-se a osteotomia do coracóide como descrito acima e internaliza-se o parafuso. O fio de poliéster é então direcionado para o portal anterior modificado trazendo consigo a cabeça do parafuso e a chave é então inserida no mesmo.

O uso da posição vertical do coracóide, sem exteriorização do enxerto é recomendado em pacientes obesos ou com muita massa muscular, nos quais essa exteriorização é muito difícil. Fazemos essa modificação do procedimento quando necessária (fig. 3). De qualquer forma, o passo de exteriorizar o coracóide faz o procedimento mais rápido e fácil, e o tamanho do portal anterior não é modificado para isso. Esse tamanho é exatamente o mesmo o do diâmetro do coracóide, 10 a 14 mm, medido intra-operatório com o uso de régua cirúrgica.

Com a soma dessas medições, glenóide e coracóide, temos o exato tamanho do parafuso maleolar a ser utilizado.

Um parafuso maleolar, de 3.5 a 4.5mm é então inserido no coracóide (fig. 4).

O comprimento de parafuso mais utilizado é de 35 a 40mm.

Terceiro passo: Fixação

O artroscópio é colocado novamente no portal posterior e o enxerto coracóide com o tendão conjunto é inserido pela abertura realizada no tendão do subescapular. Um Kocher e/ ou um probe podem ser usados para facilitar essa passagem. O parafuso é inserido na borda anterior da glenóide e a fixação é feita com o enxerto na posição horizontal. Algumas vezes não é fácil achar o buraco feito previamente na glenóide, sendo necessário colocar a câmera no portal lateral e visualizar diretamente. A chave pode ser usada como um “joystick” com a tração do parafuso contra a mesma, com o fio multifilamentar sintético número 5 (fig. 5).

Um Kocher pode ser inserido pelo PCS e usado para evitar a rotação do enxerto enquanto o parafuso é fixado.

Se o enxerto estiver um pouco grande, passando da borda da glenóide, uma pequena rotação dele pode ser suficiente para a correção desse problema, uma vez que seu formato é mais elíptico do que circular. Contudo, se o enxerto mesmo assim estiver impactando na cabeça umeral, ele pode ser moldado com o uso do shaver ósseo.

Finalmente, a rotação externa do ombro é checada com o artroscópio no portal posterior (fig. 6).

Exame radiográfico é então feito e os portais são fechados com fio de nylon 4.0 ou 3.0.

Nunca realizamos o reparo capsular nesse procedimento, mas isso fica a critério de cada cirurgião.

Cuidados pós operatórios

Os cuidados pós operatórios são os mesmos do procedimento aberto.

Os pacientes usam a imobilização pelas primeiras cinco semanas. Apenas alguns movimentos como a flexão e extensão do cotovelo, mãos e punhos são recomendados, evitando-se a rotação externa.

Os pacientes são estimulados a fazerem movimentos pendulares, rotação externa de 0º à 10º, elevação passiva assistida até 60º somente após a segunda semana da cirurgia.

A rotação externa é protegida até a quinta semana.

A progressão do ganho de rotação externa e elevação deve respeitar a dor do paciente.

O ganho de amplitude de movimentos se intensifica apenas cinco semanas após a cirurgia. O ganho agressivo de amplitude de movimento se inicia após seis semanas da cirurgia. Os exercícios ativos iniciam também após cinco semanas.

A atividade esportiva pode iniciar em oito semanas, no entanto neste momento o paciente ainda pode apresentar um déficit de rotação externa e alguns esportes podem ter restrição por este motivo.

O ganho total de rotação externa deve ser alcançado até o sexto mês após a cirurgia.

Resultados da cirurgia:

Em nossa publicação inicial(17) com seguimento mínimo de 2 anos temos os resultados a seguir:

Verificamos uma melhora significativa no escore UCLA, ROWE e Simple Shoulder Test.

A diferença de Rotação externa (DER) em adução para estes pacientes foi similar aos que realizaram o procedimento aberto: 11.50±1.65(SD 9.02), CI 8.13º to 14.87º.

A elevação mostrou diferença de mais de 10º em apenas 6,67% dos casos.

A rotação interna não foi avaliada, no entanto, 30% dos pacientes referiram desconforto no extremo deste movimento.

Complicações e revisões

  1. Complicações intra-operatórias e de curto prazo:

Fratura do coracóide: Foram observados dois(6,06% dos casos) pacientes com fratura do coracóide no intra-operatório, uma foi completa e o cirurgião realizou com sucesso uma tenodese do tendão conjunto através do Split do subescapular. A outra fratura foi parcial e o cirurgião realizou uma cerclagem do coracóide e completou o procedimento de Bristow-Latarjet artroscópico.

Lesão neurológica: Não ocorreu nenhum caso de lesão neurológica nesta série.

  1. Complicações pós operatórias após 2 anos de seguimento:

Não consolidação: Não houve.

Quebra do parafuso: Não houve.

Osteólise: A osteólise foi observada pela radiografia axilar e esteve presente em 10,00% dos pacientes: 6,67% sem repercussão clínica recusaram a retirada do parafuso e 3,33% submetidos à retirada do mesmo.

Osteoartrose: Foi avaliada por radiografias. Esteve presente em 6,67% pacientes, todos apresentando uma artrose moderada segundo a classificação de Samilson & Prieto(18), sendo que 3,36% deles apresentavam uma artrose moderada antes do procedimento. Os pacientes  tinham entre 5 e 7 anos de procedimento.

Infecção: Foi observado em 3,33% dos casos e só ocorreu após mais de 6 meses do procedimento.

Impacto anterior: O impacto anterior foi observado em 6,67% dos pacientes sendo 3,33% deles mencionados acima com osteólise associada, Todos essesos os pacientes foram submetidos à retirada da síntese.

Recidiva da luxação: Não houve.

Discussão

A cirurgia de Bristow-Latarjet é um dos procedimentos mais confiáveis para o tratamento da instabilidade anterior do ombro, devido ao seu mecanismo de tríplice estabilização(7). Uma vez que existe uma tendência favorável de se utilizar procedimentos cirúrgicos minimamente invasivos por esses reduzirem cicatrizes e traumas cirúrgicos, parece lógico modificar os procedimentos antigos para esta nova abordagem. Recentemente, alguns autores apresentaram suas modificações, que permitiram que o procedimento de Bristow-Latarjet artroscópico fosse realizado(1,7,9,10,17). As vantagens relacionadas à utilização de um procedimento de Bristow-Latarjet artroscópico são os seguintes: melhor visualização da área de inserção no rebordo anterior da glenóide; possíveis correções do enxerto, evitando o impacto do mesmo; o teste da rotação externa sob visão direta; tratamento de lesões intra-articulares concomitantes; redução de cicatrizes e dor no pós-operatório e possivelmente as vantagens cosméticas. As desvantagens são: elevação dos custos, a curva de aprendizado e a necessidade de formação específica(17).

A fratura do coracoide foi a principal complicação deste procedimento em nossas mãos. Edwards e Walsh afirmaram que a quebra do coracóide poderia ser evitada usando-se a técnica de 2 dedos, no momento de parafusar o enxerto na glenóide, que melhora o controle do torque(19). Outra consideração é a mudança do tamanho do parafuso para diâmetros entre 3,5 e 4,0mm, esses diâmetros parecem ser mais apropriados para evitar as fraturas do que um 4,5mm para este procedimento. Também é importante mencionar que para exteriorizar o coracóide deve ser utilizado um Kocher no tendão conjunto ao invés de no enxerto para evitar fraturas do mesmo. Na verdade, ao ter esses três cuidados, o autor se sentiu mais confiante e não houveram mais casos de fratura. 

Sobre o tratamento das fraturas:

 Em um casos onde a fratura não estava completa cerclagem  do coracóide utilizando fio de  poliéster sintético número 5 é uma alternativa com bons resultados em nossas mãos. Esta fratura incompleta ocorreu em uma paciente do sexo feminino , talvez porque o parafuso fosse muito largo (4.5mm) para o coracóide. Em casos onde a fratura é completa ocorrendo no momento da fixação o autor orienta realização da tenodese do tendão conjunto na borda anterior da glenóide com auxílio de âncoras de maneira semelhante à técnica de Bristow no passado. Um paciente apresentou uma quebra parcial do enxerto que foi descoberta após a cirurgia. 

Os pacientes submetidos à tenodese biceptal por fratura possuem bons resultados funcionais sem recidiva da instabilidade. Alguns autores observaram que não há diferença significativa em testes realizados em cadáveres entre transferência do coracóide e apenas do tendão conjunto, tenodese(20,21). Alguns autores observaram que o coracóide pode nem mesmo produzir o efeito de bloqueio ósseo como desejado(22).

Na verdade, nem os procedimentos de  Bristow ou Latarjet originais possuem osso suficiente para produzir um efeito de bloqueio ósseo. No Bristow original, a ponta do coracoide é suturada na borda(4) da glenoide anterior, enquanto no Latarjet  original, o tamanho do enxerto coracoide é pequeno, permitindo até a completa preservação da inserção do peitoral menor no coracóide(5).  O efeito de bloqueio ósseo de algumas variações modernas do procedimento Bristow-Latarjet adicionou estabilidade óssea em relação aos procedimentos cirúrgicos originais, no entanto pode ser importante apenas para os pacientes em que o cálculo das lesões de Hill-Sachs x 0,84 são maiores do que o diâmetro da glenóide por apresentarem acoplamento ósseo(15,16). Sobre o melhor diâmetro do parafuso, a literatura permanece incerta. Walsh e Boileau usaram com sucesso parafusos maleolares de 4,5mm(23), Burkhed et al(24) e Di Giacomo et al(25) utilizaram-se parafusos de 3,75mm, e Lafosse et al utilizaram parafusos de 3,5mm(7). Na experiência pessoal do autor o tamanho do parafuso vai depender das características do paciente: Para homens altos, talvez o parafuso de 4,5mm possa ser utilizado, no entanto o tamanho mais recomendado é entre 3.5mm a 4.0mm.

Walsh e Boileau, não recomendam o uso de arruelas para evitar o impacto(26). No entanto, ao usar parafusos entre 3,5 e 4,0 as arruelas são menores, portanto seu uso passa a ser recomendado por distribuir melhor a pressão sobre o enxerto sem ter o problema do impacto das arruelas grandes. 

Neste procedimento de Bristow-Latarjet artroscópico  a osteólise foi observada em alguns casos. Na opinião do autor, também pode ser associado às forças elevadas do parafuso sobre o enxerto(26). Nesta série, as avaliações foram realizadas apenas por raios-x, que não é o método mais sensível. Um dos pacientes com osteólise e impacto, a remoção do parafuso foi necessária(27).  O paciente que relatou o impacto foi submetido à revisão para remoção da síntese; no entanto, cerca 30% dos pacientes responderam não à questão 11 do Simple Shoulder Test. Isto significa que estes pacientes apresentaram algum nível de dificuldade em lavar a parte de trás do ombro oposto com a extremidade afetada. Portanto, o impacto pode estar sendo subestimado pelos pacientes, e portanto estamos inclinados a utilizar a taxa de 30% como possibilidade de impacto, mesmo que presente apenas em extremos de movimento. O impacto pode estar relacionado principalmente ao ângulo do parafuso e  enxerto. É importante destacar que ângulos superiores nos procedimentos artroscópicos nunca ultarapassaram a perpendicular da borda da glenóide original, porque a visão direta permite que se tenha o controle direto sobre o posicionamento, evitando assim a medialização do enxerto, mas ocasionalmente causando impacto ou desconforto em extremos da rotação interna. O autor sugere que o tamanho e a obliquidade do enxerto influenciam no tanto no impacto anterior como na profundidade efetiva da glenóide(28).  

A taxa de revisão foi de 6,67%, apenas para retirada da síntese, muito parecida com o 7% da literatura para a cirurgia aberta(8).  

Osteoartrose esteve presente em apenas ombros, 6,67%, e 3,33% tinham artrose antes do procedimento cirúrgico. Esta baixa taxa pode estar associada ao melhor posicionamento do enxerto. No entanto, o tempo de seguimento para avaliar a artrose é pequeno para enfatizar esses benefícios. 

É importante fixar o coracóide sem degraus à curvatura da glenóide tanto para evitar o estresse no enxerto quanto sobrecarga do quadrante póstero-superior da glenóide(10).

Nós não tivemos nenhuma recidiva da luxação até o momento, mas o tempo de seguimento pode ser insuficiente para estabelecer uma conclusão sobre este tema.

Em relação ao posicionamento do enxerto, está bem estabelecido que uma medialização de 5mm ou mais do coracóide pode estar associado à altas taxas de complicações(29). Novamente, o posicionamento do enxerto pela via artroscópica pode ser vantajoso.

Nenhum caso de Pseudoartrose foi observado, esse dado favorável pode ser devido à melhor exposição do osso esponjoso da borda anterior da glenóide, melhor visualização da fixação, evitando-se a interposição de tecidos, e a preferencia do autor de posicionamento do enxerto na horizontal. Esta posição favorece a consolidação óssea entre o osso esponjoso da glenóide e do coracóide. Vale salientar que não foi utilizada a tomografia em todos os pacientes para avaliar a consolidação, portanto as pseudoartroses assintomáticas podem ter sido subestimadas.

O autor acredita que um parafuso é suficiente para fixar o coracóide. Hovelius apresentou um artigo mais antigo relacionado ao procedimento de Bristow-Latarjet. Ele relatou 16 recidivas dentro de uma amostra de 319 ombros, 5%, que foram submetidos ao procedimento de Bristow-Latarjet usando apenas 1 parafuso, 13% apresentaram pseudartrose, no entanto, a união fibrosa não afetou as taxas de recorrência e apenas 3 pacientes foram submetidos à cirurgia de revisão devido à persistência da instabilidade(29).  De acordo com Hovelius, a recidiva tem mais relação com a medialização do enxerto do coracóide(29). Talvez a razão para nossas baixas taxas de recorrência, comparando com a literatura seja uma melhor visualização do ponto de inserção do enxerto, porém um seguimento maior é necessário para se estabelecer esta conclusão como certa.  

Taxas de recidiva semelhantes às relatadas por Hovelius, 4%, foram também relatadas recentemente por Burkhart et al em 102 pacientes(24), e por Collin et al, em 74 pacientes(26), esses dois últimos estudos usaram 2 parafusos para fixação, enquanto o estudo de Hovelius usou um.  

A lesão neurológica mais comum foi a do nervo musculocutâneo, relatada em 0,6% dos procedimentos cirúrgicos(8). O autor não encontrou qualquer lesão ou disfunção do nervo, no entanto, uma vez que taxas pequenas de lesão neurológica também estão disponíveis na literatura, mais dados são necessários para sugerir qualquer conclusão sobre a segurança neurológica. 

Este procedimento usa apenas equipamentos artroscópicos simples e parafusos, portanto possui uma vantagem de custo benefício em relação ao Latarjet artroscópico. 

Mais dados sobre este procedimento estão disponíveis na Acta of Shoulder and Elbow surge

Referências

1- Garcia JC, Garcia JPM, Mattos CA & Zabeu JLA. Arthroscopic Bristow-Latarjet-Like procedure: Surgical technique. Tech Shoulder Elbow Surg. 2009 Sep; 10(3):94-98. 

2- Boileau P, Villalba M, Hery JY, Balg F, Ahrens P & Neyton L. Risk factors for recurrence of shoulder instability after arthroscopic Bankart repair. J Bone Joint Surg Am. 2006 Aug; 88:1755–1763. 

3- Page CM & Bristow WR. The treatment of fractures and dislocations in general practice, 3rd EdOxford, Oxford Medical Publications, 1929.

4- Helfet AJ. Coracoid transplantation for recurring dislocation of the shoulder. J Bone and Joint Surg Br. 1958 May; 40:198–202.

5- Latarjet M. Treatment of recurrent dislocation of the shoulder [In French]. Lyon Chir. 1954 Mar; 49:994–997.

6- Patte D, Bernageau J, Rodineau, J & Gardes J. Unstable painful shoulders. Rev Chir Orthop, 1980; 66: 157–165. 

7- Lafosse L, Lejeune E, Bouchard A, Kakuda C, Gobezie R & Kochhar T. The arthroscopic Latarjet procedure for treatment of anterior shoulder instability. Arthroscopy J Arthroscop Relat Surg. 2007 Nov; 23:1242e1–1242e5. 

8- Griesser MJ, Harris JD, McCoy BW, Hussain WM, Jones MH, Bishop JY & Miniaci A. Complications and re-operations after Bristow-Latarjet shoulder stabilization: a systematic review. J Shoulder Elbow Surg. 2013 Feb; 22:286-292. 

9- Boileau P, Bicknell RT, El Fegoun AB & Chuinard D. Arthroscopic Bristow procedure for anterior instability in shoulders with a stretched or deficient capsule: the ‘‘Belt-and-Suspenders’’operative technique and preliminary results. Arthroscopy J ArthroscopRelat Surg. 2007 Jun; 23:593–601. 

10- Nourissat G, Nedellec G, O’Sullivan NA, Debet-Mejean A, Dumontier C, Sautet A & Doursounian L. Mini-open arthroscopically assisted Bristow-Latarjet procedure for the treatment of patients with anterior shoulder instability: a cadaver study. Arthroscopy J Arthroscopy Relat Surg. 2007 Oct; 22:1113–1118. 

11-Balg F & Boileau P. The instability severity index score: A simple pre-operative score to select patients for arthroscopic or open shoulder stabilization. J. Bone Joint Surg Br. 2007 Nov; 89(11):1470-1477. 

12-Bigliani LU, Newton PM, Steinmann SP, Connor PM & McIlveen SJ. Glenoid rim lesions associated with recurrent anterior dislocation of the shoulderAm J Sports Med. 1998 Jan-Feb;26(1):41-45.

13-Itoi ELee SBBerglund LJBerge LL & An KN. The effect of a glenoid defect on anteroinferior stability of the shoulder after Bankart repair: a cadaveric study. J Bone Joint Surg Am. 2000 Jan;82(1):35-46.

14-Itoi E1, Lee SBAmrami KKWenger DE & An KN. Quantitative assessment of classic anteroinferior bony Bankart lesions by radiography and computed tomography. Am J Sports Med. 2003 Jan-Feb;31(1):112-8.

15-Yamamoto NItoi EAbe HMinagawa HSeki NShimada Y & Okada K. Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elbow Surg. 2007 Sep-Oct;16(5):649-56.

16-Itoi E, Yamamoto N & Omori Y. Glenoid Track. In: Di Giacomo G, Constantini A, De Vita A & Gasperis N (eds) Shoulder Instability. Springer-Verlag, Italia; 2011. p. 1-17. 

17-Garcia JC Jr. Arthroscopic Bristow – Latarajet procedure: Results and technique after nine-year experience. Acta Shoulder Elbow Surg. 2016 Jul-Oct; 1(1): 27-34.

18- H-Samilson R & Prieto V. Dislocation arthropathy of the shoulder. J Bone Joint Surg (Am) 1983 Apr; 65(4): 456-60.  

19- Edwards TB & Walch G. The Latarjet procedure for recurrent anterior shoulder instability: rationale and technique.Operative Techniques in Sports Medicine; 2002 Jan; 10(1): 25-32.

20- Thomas PR, Parks BG & Douoguih WA. Anterior shoulder instability with Bristow procedure versus conjoined tendon transfer alone in a simple soft-tissue model. Arthroscopy J Arthroscopy Relat Surg, 2010 Sep; 26(9): 1189-1194. 

21- Yamamoto N, Muraki T, An KN, Sperling JW, Cofield RH, Itoi E, Walsh G & Steinmann SP. The Stabilizing Mechanism of the Latarjet Procedure: A Cadaveric Study. J Bone Joint Surg Am, 2013 Aug; 95(15):1390-1397. 

22- Douoguih WA1, Panchal A, Osbahr D & Parks B. Conjoined tendon transfer vs modified Bristow in a glenoid bone loss model: A biomechanical study. 

Arthroscopy J Arthroscopy Relat Surg, 2013 Jun; 29(6): e5-e6. 

23- Walsh G & Boileau P. Latarjet-Bristow procedure for recurrent anterior instability.  Tech Shoulder Elbow Surg. 2000 Sep; 1(4): 256-261. 

24- Burkhart SS, De Beer JF, Barth JR, Cresswell T, Roberts C & Richards DP. Results of modified Latarjet reconstruction in patients with anteroinferior instability and significant bone loss. Arthroscopy. 2007 Oct; 23(10): 1033-1041. 

25- Di Giacomo G, Constantini A, de Gasperis N, De Vita A, Lin BK, Francone M, Beccaglia MA & Mastantuono M. Coracoid bone graft osteolysis after Latarjet procedure: A comparison study between two screws standard technique vs mini-plate fixation. Int J Shoulder Surg, 2013 Jan; 7(1): 1-6.

26- Collin P, Rochcongar P & Thomazeau H. Treatment of chronic anteriorshoulder instability using a coracoid bone block(Latarjet procedure): 74 cases. Rev Chir Reparatrice Appar Mot. 2007 Apr; 93(2): 126-132.

27- Ghodadra N, Gupta A, Romeo AA, Bach BR, Verma N, Shewman E, Goldstein J & Provencher MT. Normalization of glenohumeral articular contact pressures after Latarjet or iliac crest bone-grafting. J Bone Joint Surg Am, 2010 Jun; 92: 1478-1489. 

28- Lippitt SB, Vanderhooft JE, Harris SL, Sidles JA, Harryman DT 2nd & Matsen FA 3rd. Glenohumeral stability from concavity-compression: A quantitative analysis. J Shoulder Elbow Surg. 1993 Jan; 2(1):27-35. 

29- Hovelius L, Sandstrom B, Olofsson A, Svensson O & Rahme H. The effect of capsular repair, bone block healing, and position on the results of the Bristow-Latarjet procedure (study III): long-term follow-up in 319 shoulders. J Shoulder Elbow Surg. 2012 May; 21(5):647-660 

Chapter13. Nerve Entrapment

Publicado em: 15 de maio de 2020 por Dr. José Carlos Garcia Jr.
Categorias: Capítulos de Livros

Telemicrosurgery

Telemicrosurgery: RAMSES, chapter 13.,2013, pp 109-117 Springer Paris

 DOI 10.1007/978-2-8178-0391-3_13

Print ISBN 978-2-8178-0390-6

Online ISBN 978-2-8178-0391-3

16.1 Introduction:

This chapter is designed to demonstrate the anatomical and functional causes of nerve entrapment in upper limb and its possible surgical treatments. The robotic, endoscopic and open treatment of nerve entrapment syndromes will be presented. The surgeon needs to understand and recognize the anatomical considerations and variations in the common locations of nerve compressions.

Knowing these entrapment syndromes, the surgeon will be able to access the correct surgical site. Robotic assisted surgery is already available as a treatment for some of these conditions, and as the field develops, more robotic solutions will be available for these common problems.

16.2 General Considerations:

Patients with nerve entrapment syndromes often have concomitant neurologic conditions, and surgeons caring for such patients must be aware of them.

Some factors that may affect compression syndromes include:

1- Fructose and sorbitol substances increase the intra-fascicular pressure

2- Hereditary neuropathies

3- Acquired and congenital abnormalities (elbow varus-valgus)

4- Muscle hypertrophy in athletes

5- Repeated trauma

6 – Peripheral fibers are more susceptible to compression

7 – More myelin increases susceptibility when there is compression

8 – If the nerve has more fibers, the nerve will be more fragile.

9 – If the nerve has more connective tissue, it has lower compression risk

10 – Fractures

11 – Dislocations

12 – Presence of tumors and cysts

13 – Any increase in pressure around the nerve may cause venous congestion and circulatory compromise, affecting the nerve

In addition, the practice of reconstructive surgery carries a risk of iatrogenic injury and entrapment syndromes to neighboring neurologic structures. 

The knowledge of the most common sites for nerve lesion around the upper limb allows surgeons to better recognize these entities,asFamiliarity with the relevant neural anatomy will also help surgeons  to avoid potential neural injuries. 

Sometimes entrapment syndromes may cause weakness and pain, and nerve lesions may result in sensory and motor loss. 

Strength measurement is important in the neurologic evaluation of the patient, however sometimes it is possible to move structures using muscles with different innervation. The elbow, for example, can strongly flex with the action of the brachioradialis without having any function of the biceps and the brachialis. Some patients can abduct the shoulder through a full arc of motion by using either just the supraspinatus or the deltoid, in the face of complete paralysis of one or the other1. 

Since different nerves may have the same root, diminished  radial nerve function should alert the examiner to look closely at axillary nerve function, because they are both derived from the same cord(posterior). Similarly, loss of median nerve function that also affects the musculocutaneous nerve strongly suggests the lesion is at the level of the lateral cord.

One needs to evaluate patients for other conditions causing motor impairment besides those of a neurologic etiology. Certainly, the surgeon needs to consider that an inability to externally rotate the arm might represent a neurologic lesion, a suprascapular nerve entrapment affecting the rotator cuff, a rotator cuff tear, or any combination thereof. 

The surgeon must carefully evaluate the patient presenting with pain in the upper extremity from a cervical radiculopathy in the context of  motor weakness and sensory loss. In this situation, flexion and extension of the cervical spine or Spurling’s maneuver might reproduce or exacerbate the patient’s symptoms. Upper motor neuron lesions can also result in shoulder weakness. In these cases, the deep tendon reflexes may be hyperreflexic, pathologic reflexes may be present, and tone may be increased. 

Referred pain should also be excluded during the clinical examination. Cardiac and other intrathoracic as well as intra-abdominal complaints may be manifested as upper limb pain.

16.3 Entrapment sites: 

The specific structures and symptoms related to each nerve entrapment will be addressed in the following:

16.3.1 Musculocutaneous Nerve 

The lateral free margin of the biceps aponeurosis can exert a compression force  on the musculocutaneous nerve as the elbow extends. The nerve is caught between the biceps tendon and brachialis fascia causing pain in the lateral aspect of the forearm. This compression force can be markedly accentuated if the forearm is fully pronated.2

16.3.2 Axillary Nerve

The quadrilateral space syndrome has been described as a potential cause of posterior shoulder pain resulting from compression of the axillary nerve within the quadrilateral space. 

Fibrous bands 3,4 are one of the most commonly cited causes of compression of the contents of the quadrilateral space.  

16.3.3 Suprascapular Nerve

Suprascapular neuropathy can occur from a variety of causes, including:transverse scapular ligament anomalies,5compression from adjacent ganglia,6 abnormal osseous morphology of the suprascapular notch,7,8 traction injury,9repetitive or extreme shoulder motions, rotator cuff rupture,10,11 and trauma.12 Isolated nerve compression is a relatively rare phenomenon and, as such, is easily misdiagnosed.

16.3.4 Thoracic outlet syndrome

Thoracic outlet syndrome (TOS) is a generic name used to describe patients with neurovascular symptoms related to sites of compression of the brachial plexus or its accompanying vascular structures.13.

Predominantly neurological symptoms are involved in 92-95% of the cases, 14 and may arise in any of the following structures: anomalies of scalene muscle development or insertion (these include an enlarged scalenus anticus, enlarged scalenus medius, anomalous insertion of the muscles, overlapping insertion ofscalenus anticus and medius, or enlarged scalene tubercle), scalenus minimus, scalenus hipertrophy, cervical rib14, Sibson’s fascia, clavicle (usually the sequela of fractures), compression within the coracopectoral space (or pectoralis minor syndrome), syndrome median (compression of the axillary artery between the bundles of the brachial plexus), Langer’s syndrome (compression of the neurovascular bundle by an anomalous muscle, the axillar-pectoralis), iatrogenic, traumatic, positional, residual fibrous band from an incomplete cervical rib,   anomaly of the subclavius tendon or tubercle of insertion, an anomaly not clearly identifiable as a developmental variation, or the absence of a clearly evident abnormality.15

The patient usually presents with paresthesia or nonspecific pain upon direct neurologic stimulation, or with a secondary reduction of muscles strength and loss of precision in coordination (most commonly in the rotator cuff). These symptoms may be exacerbated by direct stimulation or in specific maneuvers.  16,17

16.3.5 Spinal Accessory Nerve

The diagnosis may be suspected by trapezius atrophy and winging of the scapula, but is often missed, resulting in delayed treatment.18

Iatrogenic scar tissue is the most common nerve entrapment cause about the spinal accessory nerve due surgical dissection in the posterior triangle of the neck, such as for lymph node biopsy.

16.3.6 Long thoracic nerve

The causes of long thoracic nerve paralysis are diverse, ranging from acute or recurrent trauma to infections and surgical operations. In the majority of cases, the nerve lesion seems to be mechanical in origin.19-21

Spontaneous cases of entrapment at the scalenus medius may occur.22 

Overexertion, including athletic activities and thoracic outlet syndrome may be other causes.

This nerve injury is usually manifested as winging of the scapula(fig.1).

16.3.7 Dorsal scapular nerve

Because the nerve is usually trapped as it exits the lower two-thirds of the scalenus medius, neck rotation or extension may reproduce or exacerbate symptoms. The entrapment is caused by either a hypertonic scalenus medius, abnormal insertion of the scalenus medius into the first rib, or mechanical friction on the nerve.

16.3.8 Radial nerve

At the level of the lateral head of the triceps, the radial nerve may be compressed through the intermuscular septum23; however, the most common 4 structures that may compress the posterior interosseous nerve in the tunnel are the arcade of Frohse, the sharp tendinous margin of the ECRB, the fibrous bands anterior to the radial head, and the radial recurrent vessels24. Other causes of nerve entrapment are: adhesions at the distal aspect of the of the distal humerus, muscular anomalies, vascular aberrations, bursae, ganglions25, fibrotic bands proximally within the midportion or at the distal end of the supinator muscle26, inflammatory thickening and adherence of the extensor carpi radialis brevis27 tendinous origin to the proximal edge of the supinator in its radial side28, thrombotic recurrent radial vessels, and thickened proliferated rheumatoid synovium from the radiocapitellar joint29,30. 

 The painful condition associated with compression of the posterior interosseous nerve, is known  as radial tunnel syndrome, or resistant tennis elbow. 31,32.

If the patient shows just motor manifestations, it is termed posterior interosseous syndrome. 

At the level of the wrist, the sensory branch of the radial nerve can be compressed between the tendon of the brachioradialis and the extensor carpi radialis longus.

16.3.9 Ulnar Nerve

Common areas of compression are the arcade of Struthers, medial intermuscular septum, medial epicondyle, narrow cubital tunnel, arcade of Osbourn (fibroaponeurotic tissue connecting the humeral and ulnar heads of the flexor carpi ulnaris), and aponeurosis of the deep flexor and pronator teres; furthermore, during elbow flexion, traction forces on the ulnar nerve are major causes of increased intraneural pressure.33

The cubital tunnel changes from oval to flattened ellipse34, where flexion pressures within the tunnel may increase by seven times.35

For throwing athletes, the ulnar nerve compression can be enhanced since the pressures in the cubital tunnel increases up to six times over the resting position when the arm is placed in the cockiedthrowing postition. 

The ulnar nerve can also be compressed in Guyon’s canal in the wrist, between the pisiform bone and the hamate bone, under the pisohamate ligament.

16.3.10 Median Nerve

Carpal tunnel syndrome is the most common nerve entrapment syndrome of the median nerve, however several syndromes of more proximal entrapment have been described. These include entrapment at the ligament of Struthers, lacertus fibrosus36, heads of the pronator teres muscle, sublimis bridge of the flexor digitorum sublimis muscle, and of the anterior interosseous nerve 37. The surgeon must be cognizant of these, because such syndromes are rare and often confused with radiculopathy or carpal tunnel syndrome.

The pronator teres syndrome is often confused with carpal tunnel syndrome, and two conditions may occur simultaneously(double crush syndrome)23.

In cases of isolated motor symptoms, the anterior interosseous nerve syndrome (motor branch of the median nerve) is suspected38. This motor syndrome is seen as an isolated entity in a ratio of 1 to 40 with the pronator syndrome and these two conditions occasionally 39. 

Because of the Martin Gruber nerve anastomosis  (present between the ulnar and median nerves or ulnar and anterior interosseous nerves) distal nerve entrapment syndromes can present with mixed symptoms.

Anatomic variations causing impingement include  reduplicate [1]lacertus fibrosus, the Gantzer muscle, the palmaris profundus40, or flexor carpi radialis brevis40, vascular perforations, and tethers.

16.4 Treatment

16.4.1 Conservative Treatment

Conservative measures are sometimes effective and should be the first line treatment. 

Stretching, global postural re-education, medications that stimulate the synthesis of the myelin sheath and the neuronal cell membrane, muscle relaxants, anti-depressives and corticosteroids may all be used.

16.4.2 Open Surgical Treatment

Each part of the nerve has its own characteristics and knowledge of  anatomy and function should lead the surgeon locate the precise spot of nerve impingement.

If at surgical exploration the nerve appears intact but compressed by scar, neurolysis is indicated. If a neuroma in continuity is present, that does not conduct a nerve action potential41, resection of the neuroma and primary grafting should be considered. If a rupture or transection of the nerve is discovered, primary reapproximation or grafting are options.

 The neurolysis is accompanied by an excision of a triangular wedge of the biceps tendon overlying the nerve for musculocutaneous nerve(fig.2).

Surgical procedures include posterior exploration of the quadrilateral space and release of scar or fibrous bands to achieve decompression of the axillary nerve.3,4

For suprascapular nerve the open approach to release of the structures that compress the nerve are is technically difficult to perform.42

The surgical treatment of the thoracic outlet syndrome depends on the structures involved in the pathology. Resection of cervical rib, calvicular osteotomies and osteosynthesis for fractures or fracture sequelae, release of the pectoralis minor, scalenectomy(fig.3) and simple release are all surgical otions. Excellent and good results have been achieved in around 86% of these surgical procedures14.

The nerve release may be performed to remove scar tissue and neuromas for spinal accessory nerve entrapment, and grafting may be necessary. If the nerve presents complete lesions another options appear to achieve most  satisfactory outcomes.[2]

Surgical options are available for treating injury to the long thoracic nerve in the early stages. Some have favored neurolysis of the nerve with decompression at the level of the scalenus medius or scalenectomy.22 Another strategies is to perform neurotization (or nerve transfer) using one or two intercostal nerves, or the thoracodorsal nerve, or in late cases muscle transfer and scapula-thoracic fusion.43-45 

The dorsal scapular nerve may need scalenectomy of the scalenus medius and neurolysis in order to be decompressed.

For radial nerve the surgeon have to take special care in the region of the nerve division as well as the arcade of Frohse, where the nerve spreads out branches(fig.4).

The surgical treatment is the neurolysis and the release of the structures associated to the radial nerve compression.

For Watenberg Syndrome, the brachioradialis fascia is released by freeing the radial sensory nerve from distal to proximal. Any fibrous bands over the nerve distal to the brachioradialis fascia should also be released.

For Ulnar nerve the surgical options are neurolysis alone, neurolysis and anterior translocation of the ulnar nerve (subcutaneous or submuscle) or neurolysis, and epicondylectomy. 

In other conditions such as hypertrophied medial head of triceps (such as occurs in body builders), in the presence of the snapping triceps, the tardy ulnar palsy (a condition caused by the valgus’ elbow deformity and consequent nerve stretching) 46, hypermobility or subluxation of the nerve (congenital or due to previous trauma) the only surgical possibilities are epicondylectomy or anterior translocation of the ulnar nerve(subcutaneous or submuscular). An excision of a triangular wedge of the triceps tendon may be also necessary.

For anconeus epitrochlearis this anomalous muscle release is also necessary to liberate the ulnar nerve. When the ulnar nerve is compressed in Guyon’s canal in the wrist, the surgeon can release the pisohamate ligament.

The release of the Struthers ligament and supracondyloid process, lacertus fibrosus, bridge of the flexor digitorum sublimis muscle, teres pronator(fig.5), carpal tunnel or anomalous structures are all surgical options.

16.4.3 Endoscopic treatment

Endoscopic treatment for nerve release has been used successfully in many nerve entrapment syndromes such as the carpal tunnel, suprascapular and cubital tunnel. Endoscopic release of the ulnar nerve requires advanced endoscopic skillsand the surgeon must believethat anterior translocation is unnecessary47. 

The carpal tunnel endoscopic release is easy, fast and presents the advantages of a minimally invasive procedure48.

The suprascapular nerve release (fig.6) has a high rate successful outcomes, but demands a high level of arthroscopic/endoscopic expertise49,50. 

Cadaveric studies have also reported of brachial plexus endoscopic exploration. For live patients, endoscopic decompression for pectoralis minor syndrome(fig.7) and anterior axilary nerve release(fig.8) have been reported.

A major limit of endoscopic treatment is the two-dimensional view (absence of depth perception) The instruments are also limited, and need to have 3 degrees of freedom in order to better access some nerve entrapments sites.

Future improvement of endoscopic devices may expand indications for endoscopic release of nerve entrapment.

16.4.4 Robotic Treatment

The robotic telesurgical system consists of a three-dimensional stereoscopic vision system with three robotic slave [3]arms. The instruments have 3 degrees of freedom and are controlled by the surgeon from a console.   

If the surgeon has to perform a nerve graft  because neuroma, the tremor filtration is a very important advantage, allowing for robotic anastomosis of the nerve.

The techniques forusing endo-robotic (robotic endoscopic) surgery instead of open robotic surgery are still in development in cadaveric models. Our research suggests that in the near future, the surgeon will be able to decompress thoracic outlet syndrome, pronator teres syndrome, perform the anterior translocation of the ulnar nerve, as well as acubital tunnel release, all endorobotically.  

 We have successfully started endo-robotic procedures using novel port locations in cadaveric models, but these procedures are still experimental at this time51.

 For thoracic outlet syndrome we used anesthetic block landmarks in order to establish the portals. 

The first supraclavicular portal was made at the lateral border of the sternocleidomastoid muscle, approximately 5 cm above its point of insertion on the clavicle, and the second one just above the middle of the clavicle. 

For further procedures we are still studying the best choice of portal locations.

At this time, we are using open robotic surgery following the same steps of conventional open surgery mentioned above for some procedures in live patients (fig.9, 10 and 11). 

 Some endorobotic procedures, such as suprascapular nerve release, require new tools and different optical angles(30º and 70º) in order to be feasible.  Some procedures, such as the carpal tunnel syndrome are already feasible(fig.12) 52, but the open and endoscopic techniques are faster and cheaper.

In the near future, we will be able to better choose between open/endoscopic and robotic/non robotic. 

The robot is a great tool that can help the surgeon become more dextrous.  

Robotic assisted surgery allows performance of high dexterity operations with the help of robotic arms and improves technique due to tremor filtration, motion scaling, and ergonomics. The surgeon actually performs a better, more precise, and highly controlled surgical procedure under high magnification, which may result in an optimal surgical outcome. 

Other advantages are assepsia,instead of antisepsia, and protection of the patient and the surgeon from possible accidents that can cause contagious diseases. 

Options for augmented reality also exist. In the future, while the surgeon is performing the surgery, he may simultaneously be able to access 3D patient exams, consult a colleague who is also using a robot on line, and browse the internet for further information. 

 The sub-micron in-vivo histology with real-time functional imaging and diagnosis may help the surgeon in making decision for compressive syndromes secondary to tumors and rheumatic diseases.  

Specific antibodies and fluorescing markers will be helpful for recognizing structures we want to access and structures we want to avoid.

The principle problems of using the robotic surgery are surgery cost and the absence of tactile sensibility.

Many different tools need to be developed for future surgical procedures.

The absence of tactile sensibility is likely to be solved in the next generation of robots 53. 

The anatomic characteristics of the pathologic process and the surgeon’s expertise and judgement in specific cases remain important in determining surgical approach (open vs endoscopic vs robotic).

16.5 References

1. Steinmann SP and Spinner RJ in The Shoulder, Rokwood and Matsen 4th edition,Philadelphia, 2009.

2. Basset FH and Nunley JA: Compression of the musculocutaneous nerve at the elbow. J Bone Joint Surg  1982;64A:1050-1052.

3. Francel TJ, Dellon AL, Campbell JN. Quadrilateral space syndrome: diagnosis and operative decompression technique. Plast Reconstr Surg 1991;87:911-6.

4. Cahill BR, Palmer RE: Quadrilateral space syndrome.  J Hand Surg, 1983; 8A:65-69.

5.  Alon M, Weiss S, Fishel B, Dekel S: Bilateral suprascapular nerve entrapment syndrome due to an anomalous transverse scapular ligament. Clin Orthop Relat Res 1988:31-33. 

6. Hirayama T, Takemitsu Y: Compression of the suprascapular nerve by a ganglion at the suprascapular notch. Clin Orthop Relat Res 1981:95-96. 

7. Rengachary SS, Burr D, Lucas S, Brackett CE: Suprascapular entrapment neuropathy: A clinical, anatomical, and comparative study. Part 3: Comparative study. Neurosurgery 1979; 5:452-455. 

8. Ticker JB, Djurasovic M, Strauch RJ, et al: The incidence of ganglion cysts and other variations in anatomy along the course of the suprascapular nerve. J Shoulder Elbow Surg 1998;7:472-478. 

9. McIlveen SJ, Duralde XA, D’Alessandro DF, Bigliani LU: Isolated nerve injuries about the shoulder. Clin Orthop Relat Res 1994:54-63.  

10. Asami A, Sonohata M, Morisawa K: Bilateral suprascapular nerve entrapment syndrome associated with rotator cuff tear. J Shoulder Elbow Surg 2000;9:70-72. 

11. Warner JP, Krushell RJ, Masquelet A, Gerber C: Anatomy and relationships of the suprascapular nerve: Anatomical constraints to mobilization of the supraspinatus and infraspinatus muscles in the management of massive rotator-cuff tears. J Bone Joint Surg Am 1992;74:36-45. 

12.  Sandow MJ, Ilic J: Suprascapular nerve rotator cuff compression syndrome in volleyball players. J Shoulder Elbow Surg 1998;7:516-521. 

13. Peet RM, Hendriksen JD, Anderson TP et al: Thoracic outlet syndrome: evaluation of a therapeutic exercise program. Staff Meetings Mayo Clin 1956;31:281-287.

14. Hempel GK, Shutz WP, Anderson JF, Bukhari HI: 770 Consecutive Supraclavicular First Rib Resections for Thoracic Outlet Syndrome

An Vasc Surg 1996;10:456-462.

15. Makhoul RG and Machleder HI: Developmental anomalies at the thoracic outlet: An analysis of 200 consecutive cases. J Vasc Surg 1992;16:534-545.

16. Irlenbusch U and Gansen KH: Muscle biopsy investigations on neuromuscular insufficiency of the rotator cuff: A contribution to the functional impingement of the shoulder joint. J Shoulder Elbow Surg 2003;12:422-426.

17. Rayan GM and Jensen C: Thoracic outlet syndrome: Provocative examination maneuvers in a typical population J  Shoulder Elbow Surg 1995;4:113-117.

18. Kretschmer TAG, Braun V, Rath SA, Richter HP: Evaluation of iatrogenic lesions in 722 surgically treated cases of peripheral nerve trauma.  J Neurosurg  2001; 94:905-912.

19. Hansson KG Serratus magnus paralysis Arch Phys Med 1948, 29:156-161.

20. Johnson JT, Kendall HO: Isolated paralysis of the serratus anterior muscle. J Bone Joint Surg 1955;37A:567-574.

21. Overbeck DO, Grormley RK: Paralysis of the serratus magnus muscle: Caused by lesions of the long thoracic nerve. J Am Med Assoc 1940;114(20):1994-1996..

22. Disa JJ, Wang B, Dellon AL: Correction of scapular winging by supraclavicular neurolysis of the long thoracic nerve.  J Reconstr Microsurg  2001; 17:79-84.

23. Spinner M and Linscheid RL. Nerve entrapment syndromes. In The Elbow and its disorders 2nd Edition Bernard F. Morrey, WB Saunders, Philadelphia, 1993.

24. Ozkan M, Bacakou  AK, Gijl B, Ekin A  and MaQden O: Anatomic study of posterior interosseous nerve in the arcade of Frohse. J. Shoulder Elbow Surg 1999; 8:617-620.

25. Bowen TL and Stone KH. Posterior interosseous nerve paralysis caused by a ganglion at the elbow.  J. Bone Joint Surg. 1966;48B:774.

26. Sharrard WJW. Posterior interosseous  neuritis. J. Bone Joint Surg 1966;48B:777.

27. Millender LH, Nalebuff EA and Holdsworth DE: Posterior interosseous syndrome secundary to rheumatoid synovitis. J Bone Joint Surg 1973;55A:753-757. 

28. Capener N: The vulnerability of the posterior interosseous nerve of the forearm. J Bone Joint Surg 1966;48B:770. 

29. Marmor  L, Lawrence JF and Dubois E. Posterior interosseous nerve paralysis due to rheumatoid arthritis. J. Bone Joint Surg. 49A:381,1967.

30. Marshall SC and Murray WR. Deep radial nerve palsy associated with rheumatoid arthritis. Clin. Orthop. 103:157, 1974.

31. Ritts GD, Wood MB, Linscheid RL: Radial tunnel syndrome: a ten year experience. Clin Orthop Rel Res 1987;219:201-205.

32. Roles NC, Maudsley RH: Radial tunnel syndrome: resistant tennis elbow as a nerve entrapment. J Bone Joint Surg 1972;54B:499-508.

33. Lazaro L III: Ulnar nerve instability: Ulnar nerve injury due to elbow flexion. South Med J 1977; 70:36-40.

34. Adelaar RS, Foster WC and McDowell C: The treatment of the cubital tunnel syndrome. J Hand Surg. 1984; 9A:90-95.

35. Werner CO, Ohlin P and Elmqvist D: Pressures recorded in ulnar neuropathy. Acta Orthop Scand 1985; 56:404-406.

36. Hartz CR, Linscheid RL, Granse RR and Daube JR: Pronator teres syndrome: compressive neuropathy of the median nerve. J Bone Joint Surg 1981; 63A:885.

37. Gross PT and Tolomeo EA: Proximal Median Neuropaties. Neurol Clin 1999; 17:425-445

38. Kiloh LG and Nevin S: Isolated neuritis of the anterior interosseous nerve. Br Med J 1952; 1:850-851.

39. Hill HA, Howard FM and Huffer BR: The incomplete anterior interosseous nerve syndrome. J Hand Surg 1985; 10A:4.

40. Spinner M: Injuries to the major branches of the forearm. 2nd Ed. Philadelphia WB Saunders, 1978. 

41. Kline DG, Hudson AR: Nerve Injuries: Operative Results for Major Nerve Injuries, Entrapments and Tumors,  Philadelphia, WB Saunders, 1995.

42. Post M and Grinblat E: Suprascapular nerve entrapment: Diagnosis and results of treatment. J Shoulder Elbow Surg., 1993;2:190-197.

43. Novak CB, Mackinnon SE: Surgical treatment of a long thoracic nerve palsy.  Ann Thoracic Surg  2002; 73:1643-1645.

44. Povacz P and Resch H: Dynamic stabilization of winging scapula by direct split pectoralis major transfer: A technical note. J Shoulder Elbow Surg 2000;9:76-78.

45. Jeon IH, Neumann L and Wallace WA. Scapulothoracic fusion for painful winging of the scapula in nondystrophic patients. J Shoulder Elbow Surg 2005;14:400-406.

46. Hunt JR: Tardy or late paralysis of the ulnar nerve: A form of chronic progressive neuritis developing many years after fracture dislocation  of the elbow joint. J Am Med Assoc 1916, 66:11-15.

47. Hoffmann R, Siemionow M. The endoscopic management of cubital tunnel syndrome. J Hand Surg. 2006;31B:23–29

48. Okutsu I, Ninomiya S, Takatori Y, Ugawa Y. Endoscopic management of carpal tunnel syndrome. Arthroscopy. 1989;5:11–18

49. Lafosse L, Piper Kalman and Lanz Ulrich: Arthroscopic suprascapular nerve release: indications and technique. J Shoulder Elbow Surg 2011; 20:S9-S13

50. Garcia JC: Arthroscopic decompression of the suprascapular nerve:surgical technique. Tech Shoulder Elbow Surg 2009; 10:157-159. 

51. Mantovani G, Liverneaux P, Garcia JC, Berner SH, Bednar MS and Mohr CJ: Endoscopic exploration and repair of Brachial plexus with telerobotic manipulation: a cadaver trial laboratory investigation. J Neurosurg 2011;(online first) http://thejns.org/doi/abs/10.3171/2011.3.JNS10931

52. Guldmann R, Pourtales MC Liverneaux P: Is possible to use robots for carpal tunnel release? J Orthop Sci 2010;15:430-433.

53. Garcia JC, Mantovani G, Gouzou S and Liverneaux P. Telerobotic anterior translocation of the ulnar nerve. J Robotic Surg. 2011;5:153-156.


 [1]

Chapter 18: Evaluation of neuropathic/nerve entrapment about the elbow and forearm.

Publicado em: 15 de maio de 2020 por Dr. José Carlos Garcia Jr.
Categorias: Capítulos de Livros

The Art of the Musculoskeletal Physical Exam, ISAKOS Book, Editors John Lane, Alberto Gobbi, João Espregueira-Mendes, Camila Kaleka Cohen, Nobuo Adachi

Jose Carlos Garcia Jr

Rafael Gadioli 

Leandro Sossai Altoé

NAEON Institute – Sao Paulo – Brazil

Musculocutaneous Nerve

The musculocutaneous nerve originates from C5–C8 nerve roots and is a continuation of the lateral cord. It innervates the major elbow flexors, the biceps and brachialis, and continues through the brachial fascia lateral to the biceps tendon, terminating as the lateral antebrachial cutaneous nerve. The motor branch enters the biceps and the brachialis approximately 15 and 20 cm below the tip of the acromion.

Lateral Cutaneous Nerve of Forearm

Originating from the musculocutaneous nerve, the lateral cutaneous nerve of the forearm innervates the anterolateral region of the forearm until the thenar eminence. Its compression site is in the distal third of the arm, between the biceps and the fascia of the brachial muscle, which tenses in the forearm extension and pronation.

Compression of the lateral cutaneous nerve of the forearm is a rare and badly understood condition. It presents a poor clinical picture, with burning pain in the anterolateral aspect of the forearm with worsening in passive pronation and hyperextension of the elbow. In full pronation forced supination of the forearm with elbow flexion can also reproduce the symptoms. In chronic cases, the patient reports vague discomfort in the forearm that can intensify and worsen with pronation supination activities with the elbow extended.

On physical examination, an area of hypoesthesia on the anterolateral surface of the forearm can be identified by applying a light touch to the skin with a blind spot.

Thinking about differential diagnoses the lateral epicondylitis and radial tunnel syndrome are highlighted.

For diagnostic confirmation, the use of electroneuromyography has an action potential with prolonged latency or decreased amplitude, however a negative result will not predict patient does not present this nerve entrapment. Imaging tests have little or no value.

Radial Nerve

The radial nerve and its major branches, the posterior interosseous nerve and the superficial radial nerve, are vulnerable to compression forces from the level of the lateral head of the triceps through the region of the elbow, proximal forearm, and even into the distal forearm.

Depending on which branch of the nerve is involved at the elbow, either motor and sensory (posterior interosseous nerve) or just sensory (superficial radial nerve) symptoms can occur. One needs to be aware that when sensory symptoms like tingling or numbness are present the superficial radial nerve or a radial nerve before the division of this nerve are highly suspected. In occasions where pain on the anterolateral aspect of the elbow is present a posterior interosseous nerve impairment can be suspected, once it is not a sensitive nerve no tingling nor numbness are related to this nerve. 

Rarely, motor and sensory involvement can be due to a process in the proximal forearm affecting both branches rather than the radial nerve.

The radial nerve has its origin in the posterior fascicle of the brachial plexus and innervates the triceps, brachioradialis, anconeus, all extensors, supinator and abductor pollicis longus. In the distal region of the arm, it crosses anterior to 10 cm proximal to the lateral epicondyle. At the level of radiocapitellar articulation, divides into superficial and deep branches, passing the brachioradial fascia deep, innervating the m. brachioradialis radial and extensoris carpi radialis longus. The motor branch of the extensoris carpi radialis brevis originates from the superficial branch of the radial nerve in 58% of the population. In the elbow, the deep branch, crosses between the two heads of the supinator muscle, where it is called the posterior interosseous nerve (PIN) and innervates that muscle. The proximal edge of the supinator muscle forms the fibrous Fröhse’s arcade. The superficial radial nerve continues below the brachioradial until it emerges from the distal third of the forearm to the subcutaneous. Dorsoradial forearm tenderness until the hand can make one suspect of radial sensitive branch compression. The recurrent vessels of the radial artery cross superficial and deep to the branches of the radial nerve at the elbow, these structures can entrap the nerve, as well as fibrous adhesions of the anterior capsule. 

The PIN goes in the dorsoradial direction in the proximal forearm where 6-8 cm distal from the elbow it emerges from the supinator muscle and releases its terminal branches to the extensor digitorum communis, extensor digiti minimi, extensor carpi ulnaris, abductor policis brevis and longus, long and short thumb extensor, extensor indicis proprius and extensor digiti minimi.

Indeed, the compression sites are as follows: spiral groove of the humerus between the intermuscle septum of the triceps, and in the forearm: Fröse’s arch (most common compression site), fibrous band between the brachioraidalis and brachial muscles, Henry’s vascular complex (recurrent vessels art. Radial), tendon margin of the extensor radialis carpi brevis and distal edge of the supinator muscle.

Posterior Interosseous Nerve 

In cases of high bifurcation, the deep branch may be compressed in the lateral intermuscular septum, with local sensitivity and weakness of the wrist and finger extensors. In these cases, the superficial radial nerve is anterior to the intermuscular septum.

Classical clinical presentation of posterior interosseous nerve(PIN) paralysis is typically motor. Due to segmental innervation of the supinator, the proximal or distal location of the compression may determine an occasionally positive electromyographic study. A supine myofibrillation suggests a more proximal compression of the Fröse arcade.

If only the PIN is compressed, there will be a deficit in the extension of the fingers and thumb with radial deviation of the wrist. Because the branches for the long and short extensor carpi radialis brevis and longus of the wrist originate more proximally. In the case of partial paralysis or compression of the medial branch, weakness of the extensor carpi ulnaris, extensor digiti minimi and extensor digitorum will occur, which may lead to an attitude called the “pseudoulnar” claw.  In case of compression it occurs in the lateral branch, the weakness will be of the abductor pollicis longus, long and short extensor of the thumb and extensor proper of the fingers. There may be vague pain on the back of the forearm, but without sensory changes. Atrophy may be present in chronic cases.

The Maudsley test(Fig. 1) identifies pain at the origin of the Extensor carpi radialis brevis during movement of extension against resistance of the third finger with the extended member (differential diagnosis with lateral epicondylitis).

#Local tenderness along the Posterior interosseous nerve, and its branches need to be compared with the contralateral side, this region is regularly not very sensitive to pressure. Tenderness is particularly present on the main compression site, most commonly the Fröhse arcade on the anterolateral aspect of the elbow, located 5-10cm distal and anterior to the lateral epicondyle. 

# Supination of the forearm against resistance can reproduce pain in cases of PIN compression in the Fröhse’s arcade. This test needs to be done in two stages: 

  1. Elbow flexion: where pain can be reported in the proximal lateral forearm.
  2. Elbow extension: Pain can be equal or inferior 

When one tests the elbow in flexion the supinator muscle is more requested, because biceps is not under full tension. When elbow is extended biceps is under full tension assuming more control over the supination movement. Therefore, if pain is higher in forced supination with elbow’s flexion it’s the PIN compression is highly suggested, in opposite side when pain is higher during forced supination and elbow extension distal biceps partial lesions or tendinopathies are suggested. It is also not common that biceps pathologies cause tenderness on anterolateral aspect of the elbow when palped. Biceps will also cause high tenderness when patient in full pronation and extended elbow isometrically try to move to flexion and supination against resistance. Indeed, distal biceps tendinopathies are differential diagnosis of PIN in the Fröhse’s arcade.

Among the complementary exams that may assist in the diagnosis, there are few findings that define NIP compression. Dynamic electroneuromyography may show changes with denervation of the muscles innervated by PIN, but false negatives will not exclude the PIN syndrome.

Radial Tunnel Syndrome

The existence of the radial tunnel syndrome(RTS) is sometimes questionable, since the only symptom and complaint of the patient is constant pain, as soon as this condition is not associated with weakness of the extensor muscles and the electroneuromyography is negative.

The RTS, or also called the “tough tennis elbow”, presents a characteristic pain clinic located on the n. radial, ±5 cm lateral and distal to the epicondyle. The pain occurs during supination in a very similar manner to the PIN syndrome. Indeed, RTS is a slight PIN syndrome that predominantly presents sensitive symptoms and fatigue. Tests for RTS are the same of PIN syndrome. 

Wartenberg Syndrome

It is the compression of the sensory branch of the radial nerve, described by Wartenberg in 1926. This condition presents as clinical picture a middle or distal third of the forearm tenderness and paresthesia, between the brachioradialis and extensor carpi radialis longus (ECRL). The nerve arises in the proximal forearm at the bifurcation of the radial nerve, goes deeply to the brachioradial in the forearm, where there are 9 cm of the radial styloid emerging between the brachioradialis and the ECRL.

It has differential diagnosis with De Quervain’s tenosynovitis.

Compression can be caused extrinsically due to the use of a watch, bracelets and rubber bands or intrinsically by tumors, traumas, fibrous bands and anomalous muscles.

Symptoms are such as paresthesia on the dorsoradial aspect of the hand, with worsening with passive wrist flexion with ulnar deviation and wrist in pronation (for one minute), or active forearm supination and wrist extension against resistance(30 seconds)  The Tinel sign can be positive in the region proximal to the radial styloid (9cm). If positive over the radial styloid its compression is just of the dorsal branches. The Finkelstein test can also be positive for performing nerve traction.

The use of complementary exams is also restricted in this case, with electroneuromyography of low value. Local anesthetic block can be performed with lidocaine, which can lead to temporary improvement of the condition.

Anterior interosseous nerve

The Anterior Interosseous Nerve (AIN) can be compressed in anatomical sites such as: the supracondylar process at the distal humerus, within the Strüthers ligament of the supracondylar process, by the aponeurosis of the biceps (lacertus fibrosus), between the superficial and deep heads of the teres pronator muscle(most common site), arade of the superficial flexor digitorum superficialis, Gantzer muscle and at the Martin-Gruber anastomosis site, which is an anastomosis region that interconnects the motor branches of the median and ulnar nerves, present in 7 to 23% of the population.

The Strüthers ligament is present in 0.6% to 2.7% of the population and is a fibrous band that extends from the anteromedial aspect of the humerus to the medial epicondyle. Compression by the Strüthers ligament is responsible for 0.5% of all cases. This ligament can originate in the supracondylar process, when present in 1% of the population.

The AIN is the terminal motor branch of the median nerve, being responsible for innervating the second and third flexor digitorum profundus tendons, flexor pollicis longus, and pronator quadratus.

The compression of the true AIN has only motor deficit. There will be no sensitivity change in the forearm. The complaint will be of ill-defined pain in the forearm and a report of weakness of the thumb and forefinger.4

In the physical examination, the main test to be performed is the “ok” sign test, where the patient is unable to perform the OK sign (touching the tip of the thumb to the point of the indicator), performing flexion of the distal phalanx of the thumb and the index finger. The impairment of the flexor digitorum profundus tendon and the second flexor digitorum profundus tendon, will impede the patient to flex these tendons. A typical  incapacity of these tendons’ flexion during the ok is named as as the Kiloh-Nevin sign (Fig. 2).  

The pronator quadratus muscle can be examined separately by pronation against resistance with the elbow in flexion, in order to less tension on the humeral head of the teres pronator. Its examination needs to be comparative to the contralateral side. Other tests can be performed to help identify the most accurate location of the compression. Lacertus fibrosus can be assessed with supine resistance flexion. The pronator is round, with the pronated counter-resistance in flexion. The flexor arch, with the flexion against resistance of the intermediate phalanx of the annular finger.

Electromyographic studies are essential, which should show normal for sensitive conduction of the median nerve and changes to the quadratum pronator muscle, long flexor pollicis and flexor digitorum profundus tendon and the second flexor digitorum profundus tendon, with tapered waves, fibrillations and driving latency. MRI may show muscles with signs of edema and denervation.

Median nerve

The median nerve can be compressed within the elbow region by the supracondylar process, by the Struthers’s ligament, in the lacertus fibrosus, in rounded pronator muscle deep head or in the flexor arch. It can even be compressed by vascular malformations, anomalous muscles and synovial and bursal strains. Distal humerus fractures and elbow dislocation also can cause lesion of the median nerve. 

The passage of the nerve through the elbow region has close relationship with these anatomic structures, bringing the possibility of being affected by one or more of these structures. It can present motor and sensitive symptoms combinations, showing symptoms in the elbow, hand and forearm region. 

In this chapter it will be addressed forms of evaluate and differentiated its causes. 

Pronator syndrome 

This syndrome consists in the compression of the median nerve in the elbow region and also in the proximal part of the forearm.  The symptoms are always vague such as: pain, tingling, numbness, tiredness or fatigue, forearm discomfort with proximal irradiation. Laboral or sportive activities with pronosupination repetitive movements can trigger the symptoms. 

Generally, the symptoms are developed insidiously, but occasionally a specific event or sudden onset of pain in the forearm are related to the bigger susceptibility of the muscle stress.

It is estimated that ±5% of the symptoms related to median nerve are directly caused by the pronator teres syndrome, some studies suggest even higher percentages. Misunderstood, it is often misdiagnosed as an atypical carpal tunnel syndrome. However, unlike carpal tunnel syndrome, its symptomatology is more related to physical activities, night tingling isn’t an important complain and Phalen sign is not present. 

The pronator syndrome is characterized by the median nerve compression at the elbow and proximal forearm. Four potential compression sites include the supracondylar process and ligament of Stüthers, the lacertus fibrous, the rounded pronator and the superficial flexor digitorum superficialis ach. 

The compression region most proximal and less usual is the humerus supracondylar process. This bone process, existent in approximately 1-3% of the population, stems from the anteromedial aspect of the distal humerus, proximal 5cm to the medial epicondyle. The Struthers ligament is the fibrous band that can arise from the supracondylar process and attach to the medial epicondyle, forming a fibro-bone tunnel through which the median nerve crosses. The entrapment of the median nerve inside this tunnel is also called supracondylar process syndrome. 

The lacertus fibrosus arises from the distal bicipital tendon and inserts into the antebrachial fascia, crossing the flexor pronator muscle group. The thickened lacertus can produce median nerve compression. 

The pronator syndrome compression most frequent region is between the superficial heads (humeral) and deep (ulnar) of the rounded pronator, located from 2 to 4 cm distal to the medial epicondyle. It can be caused by muscle hypertrophy, fibrous adhesions or other teres pronator anomalies. 

The physical exam should be always comparative to the contralateral side. The hand’s palm symptoms are more related to higher compression sites out of the carpal tunnel once the sensitive branch to this hand’s region raises before the carpal tunnel.

Special care must be taken, because the forearm pronation can cause a depression into the proximal and medial forearm regions, suggesting constrictive strength of the lacertus fibrosus, also the extension of the elbow can increase compression on the humeral head of the pronator teres muscle, once it is anterior to the elbow’s rotation center.

The complete understanding related to the main compression site can be a difficult task. 

During the physical examination one needs to be aware in order to keep a suitable position avoiding median nerve compression on the carpal tunnel.

Symptoms can be reproduced by the following tests:

# Middle finger proximal interphalangeal flexion against resistance(Fig.3). The authors use to do this test with the patient’s forearm on a table. This test will tension flexor digitorum superficialis arch;

# Pronation against resistance(Fig.3) for 30 seconds can reproduce the symptoms. The authors use to do this test with the patient’s forearm on a table, with the elbow flexed, making lacertus fibrous relax.;

# The elbow flexion against resistance with supine forearm may trigger symptoms due to pressure from lacertus fibrosus(Fig. 4). One needs to be aware because if wrist is hyperextended the flexopronator mass can be overstretched, compressing the teres pronator site;

# Direct pression by the examiner on the rounded pronator proximal region, approximately 5 cm distal to the antecubital fossa (elbow pit) while making moderate resistance to pronation can also increase symptoms;

# The weakness of innervated median muscles is uncommon, but it is indicated the comparison between the two hands strength.  The pollicis longus flexor and the digitorum profundus index finger flexor are probably those which will present more evident weakness;

# Tinel signal can be present on the compression sites.

It is important to differentiate the simple compression from the double crush syndrome of the median nerve, thus cervical and wrist examination are also necessary. 

As a dynamic compression, electroneuromyographic tests in can sometimes show not significant alterations, however, when present will need to beconsidered. 

Ultrasound can allow dynamic, real-time visualization of nerves and also provide the means to precisely locate anatomical site of nerve compression. In addition, ultrasound can provide the examiner with more information about any underlying condition like ganglion cysts, lipoma, formation of neuroma or epineural hematoma. 

The pronator syndrome can also leads to forearm pronator flexor muscle atrophy, including the rounded pronator, the radial carpal flexor, long palmar and superficial flexor of the fingers. 

Nerve sheath tumors such as schwannoma and neurofibroma can also be related to nerve compression symptoms.

Ulnar Nerve

The cubital tunnel syndrome is the second most common compressive syndrome of the upper limb, second only to the carpal tunnel syndrome.

The ulnar nerve is localized medially the ulnar artery in the anterosuperior arm compartment, after crossing the intermuscular septum to the posterior compartment, it raises from the Strüthers ach on the distal arm. At the elbow, it passes at the back of the medial condylar groove, between the medial epicondyle of the humerus and the olecranon, and then enters in the cubital tunnel¹. 

In the cubital tunnel, the nerve is permanently subjected to compressive effects each time the elbow is flexed.

The most proximal compression locations are the Arcade of Strüthers and the medial edge of the intermuscular septum. Less frequent compression locations include Osborne’s fascia, a fibrous band that connects the proximal edge of the flexor carpi ulnaris muscle to the medial epicondyle and aponeurosis of the flexor pronator muscles.

The ulnar nerve is not a fixed structure and needs to move freely both longitudinally and medially during elbow movement.

Two major age ranges are described for cubital tunnel syndrome. The first is between 20 and 30 years old, predominantly secondary to the trauma. The second is developed between 50 and 60 years old, associated with degenerative disease.

Several factors can increase pressure on the ulnar nerve at the elbow. Postural addiction with flexion when sleeping, the hypermobility of the nerve at the cubital tunnel promoting subluxation in the medial epicondyle during the flexion. Other etiological factors of compression are muscle anomalies, such as epitrochlear anconeus, tumors, ganglia, cubit valgus deformity, sequelae of elbow fractures and dislocations, elbow arthrosis, thickening of the Arcade of Struthers, as well as sports.

Chronic compression may be secondary to mass lesions, including bursae, ganglia, synovitis, bruise, osteophytes, calcifications and ectopic ossifications. In athletes, lateral displacement of the ulna secondary to chronic medial collateral ligament laxity or lesion, and cubitus valgus deformity can also cause cubital tunnel syndrome.

The clinical picture is characterized by intermittent numbness and tingling in the ulnar nerve autogenous area, being related to the shoulder and elbow position increasing the pressure in the nerve and its symptomatology.

Patients can describe a difficulty in fine motor tasks, such as buttoning. Crossing fingers can be difficult because of interosseous weakness. Hypotrophy or atrophy of the intrinsic muscles and adductor pollicis, with ulnar claw, weakness of other extrinsic muscles innervated by the ulnar can be also present.

Pain is not a frequent complaint, there is no change in forearm sensibility. However, less sensibility, tingling and numbness in medial part of the annular finger and all the little finger are the frequent symptoms.

Tinel can be positive and helpful in delimitating the main compression area. 

The elbow flexion for 30 seconds may also reproduce sensitve symptoms in the patient. It happens because the ulnar nerve passes posterior to the elbow’s rotation center. Pressures within the cubital tunnel can increase until to 7-fold during elbow flexion. 

Collateral medial ligament tests are also important because lesions or attenuation of this ligament can also stretch the nerve when a valgus force is done on the elbow. Valgus stress test will be done with 30º elbow flexion. It is strongly suggested to make this test in supination and pronation, because in supination a false positive can take place when the patient presents posterolateral rotatory instability.

Ulnar nerve dislocation can be visible, usually during the elbow flexion. When one has difficulties on visualization one needs to full extends the patient’s elbow, feel the medial epicodyle, using 2nd and 3rd fingers and then the patient flexes his elbow. It is possible to feel the nerve dislocation using this maneuver. Snapping triceps can also be felt or visualized with this same maneuver.

X-ray examen can be useful in presence of bone lesions or deformities. The electroneuromyography is usually very helpful, however for some cases of dynamic or light compression it may not be altered. Ultrasound dynamic exams can make possible to determine ulnar dislocations and nerve narrowing. Unlike radial and median nerve neuropathies, ulnar neuropathy usually presents with increased ulnar nerve signal on T2-weighted examination. This change in the signal may be better appreciated in the ulnar nerve because of its larger size. Other pathological processes related to cubital tunnel neuropathy are identified by MRI imaging, including osteoarthritis, synovitis, valgus deformity, anomalous muscles and tumors.

Bibliography 

  1. Akhondi H, Varacallo M. Anterior Interosseous Syndrome. Treasure Island (FL): StatPearls Publishing; 2020 Jan-.
  • Asheghan M, Hollisaz M, Aghdam AS, Khatibiaghda A. The prevalence of pronator teres among patients with carpal tunnel syndrome: Cross sectional study. Int J Biomed Sci. 2016; 12(3):89-94.
  • Babaei-Ghazani A, Roomizadeh P, Nouri E, Raeisi G, Yousefi N, Asilian-mahabadi, M et al.  Ultrasonographic reference values for the median nerve at the level of pronator teres muscle. Surg Radiol Anat. 2018; 40(9):1019-1024. 
  • Bassett FH, 3rd, Nunley JA. Compression of The Musculocutaneous
  • Dang AC, Rodner CM. Unusual compression neuropathies of the forearm, part I: radial nerve. The Journal of hand surgery.  J Hand Surg Am. 2009 Dec;34(10):1906-14.
  • Doughty C, Bowley M.  Entrapment Neuropathies of the Upper Extremity. Med Clin North Am. 2019; 103(2):357-370.
  1. DY C, Mackinnon S. Ulnar neuropathy: evaluation and management. Curr Rev Musculoskelet Med. 2016; 9(2): 178–184.
  1. Freedman M, Helber G, Pothast J, Shahwan T, Simon J, Sher L. Electrodiagnostic Evaluation of Compressive Nerve Injuries of the Upper Extremities. Orthop Clin North Am. 2012; 43(4):409-16.
  1. 12. Garcia JC.  Nerve Entrapment. In: Liverneaux P., Berner S., Bednar M., Parekattil S., Mantovani Ruggiero G., Selber J. (eds) Telemicrosurgery. Springer, Paris; 2013
  1. Kiloh LG, Nevin S. Isolated Neuritis of the Anterior Interosseous Nerve. Br Med J. 1952 Apr 19; 1(4763): 850–851
  1. Kumar, SD. Bourke G. Nerve compression syndromes at the elbow, Orthopaedics and Trauma. 2016; 30(4): 355-62.
  1. Morrey BF, Sanchez-Sotelo J. The Elbow and its disorders. 5th edition. Philadelphia: Elsevier; 2018.
  1. Naam NH, Massoud HA. Painful Entrapment of The Lateral Antebrachial Cutaneous Nerve At The Elbow. J Hand Surg Am. 2004; 29:1148–53.
  1. Felsenthal G, Mondell DL, Reischer MA,  Mack RH. Forearm pain secondary to compression syndrome of the lateral cutaneous nerve of the forearm. Arch Phys Med Rehabil. 1984; 65:139–41.
  1. Lanzetta M. Foucher G. Entrapment of the superficial branch of the radial nerve (Wartenberg’s syndrome). A report of 52 cases. Int Orthop. 1993; 17:342–5.
  1. Moradi A. Ebrahimzadeh MH, Jupiter JB. Radial Tunnel Syndrome, Diagnostic and Treatment Dilemma. The archives of bone and joint surgery. Arch Bone Jt Surg. 2015 Jul; 3(3):156-62.
  • Nicolle, FV, Woolhouse FM. Nerve compression syndromes of the upper limb. J Trauma. 1965; 5:313–8.
  • Pardini A, Freitas A. Cirurgia da mão – Lesões não traumáticas. 2nd edition. Rio de Janeiro: Med Book; 2008. 
  • Roles NC,  Maudsley RH. Radial tunnel syndrome: resistant tennis elbow as a nerve entrapment. J Bone Joint Surg Br. 1972 Aug;54(3):499-508.
  • Wolfe S, Scott W, Pederson W, Kozin SH, Cohen M. Green’s Operative Hand Surgery 7th edition. Philadelphia: Elsevier; 2016.

Chapter 57: ENDOSCOPIC ROBOTIC DECOMPRESSION OF CUBITAL ULNAR NERVE

Publicado em: 15 de maio de 2020 por Dr. José Carlos Garcia Jr.
Categorias: Capítulos de Livros

Arthroscopy and Endoscopy of the Elbow, Wrist and Hand: Surgical anatomy and techniques

EDITORS: DEEPAK N BHATIA, GREGORY I BAIN, GARY POEHLING, BENJAMIN GRAVES

Introduction

The use of robotic surgery has expanded in several surgical specialties and has advantages over the traditional surgical methods. Within orthopedics, robotic surgery has been used in brachial plexus and neurologic releases. The association of the robotic technology and endoscopy have further expanded indications and procedures can now be performed with shorter time of hospitalization and minimally invasive approach.  Advantages of this method include: a) movement accuracy, b) high resolution imaging with three-dimensional vision, c) gas infusion rather than saline solution permits better visualization and less bleeding, d) filtering of the surgeon’s tremor when manipulating objects, e) movement scaling and f) hand-free camera manipulation. In addition, in future there is the possibility of remotely performing the surgery (telesurgery). 

The disadvantages and limitations of this new technology are: a) higher costs, b) lack of haptic feedback, c) instruments were not designed for orthopedic procedures, and d) limitation of the use of this procedure in patients with poor subcutaneous tissue. 

Indications and contraindications:

The procedure is performed for symptomatic ulnar nerve compression at the cubital tunnel after adequate conservative treatment has failed to provide relief. Non-robotic endoscopic technique for ulnar nerve decompression is an alternative to robotic endoscopic surgery.

Absolute contraindications include space-occupying lesions (tumors, osteophytes), long-standing elbow contractures requiring release, prior trauma with extensive scar formation or skin grafts, and prior open decompression with transposition of the ulnar nerve.

Subluxation of the ulnar nerve and inexperience with robotic technique are relative contraindications. 

Surgical Technique

  • Endoscopic robotic decompression of the ulnar nerve uses a new coupling and configuration for the robotic DaVinci® SI or Xi systems (Intuitive Surgical, Sunnyvale, CA) and is based on prior knowledge of endoscopic robotic techniques related to different surgical areas such as urology and gynecology.
  • The procedure is performed under general anesthesia. The patient is placed supine and the arm is raised 170º in the Trendelenburg position (Figure 1). A tourniquet may be used and is placed high on the arm.
  • Since there are no natural cavities in the ulnar nerve pathway, endoscopy in this region requires the creation of an initial cavity. Through a 1.2 cm portal (length of the da Vinci robot cannula) an initial subcutaneous cavity is created in the middle third of the arm with direct visualization of the nerve exit point in the Strüthers arcade. The dissection is performed using Metzenbaum scissors and is directed to the distal arm (Fig. 2). 
  • Two other portals are created at the junction of middle and distal thirds of the arm, and are located 3 to 5 cm lateral and medial to the first portal. (Fig.3) These two portals must be 8 mm long to allow robotic hand cannulas to pass through. The cannulas are gently passed into the cavity under endoscopic view in order to prevent injuries. Once the robotic hands are visible through the optics in the cavity, this cavity can be expanded distally towards the medial elbow. 
  • A needle can be used to identify the optimal location of the two robotic hand portals mentioned above. It is important to have a safe distance between the portals to avoid robotic arm conflict. The third robotic arm is not used in this procedure. 
  • Air insufflation at a pressure of 8-14 mm Hg is used to prevent bleeding. 0.9% saline may be introduced and aspirated to clear the surgical field when necessary.
  • Two different robotic hands can be used as follows: Maryland bipolar forceps 8mm (Intuitive Surgical, Sunnyvale, CA, USA) and a Curved Scissor 8mm (Intuitive Surgical, Sunnyvale, CA, USA). A Hot ShearsTM Monopolar Curved Scissor 8mm (Intuitive Surgical, Sunnyvale, CA, USA) can also be used (only as scissors and never as electrocautery device).
  • After fitting the cannulas and robotic hands, the surgeon uses the console to operate the robot remotely. 
  • Robotic arms have seven degrees of freedom and can reproduce hand and wrist movements, and this is an advantage when compared with other endoscopic methods. In addition, the surgeon can scale the movements improving precision to the robotic arms.
  • The nerve is followed and dissected in the subcutaneous space until the cubital tunnel is reached. The cubital tunnel is split and the nerve is released (Fig. 4) further distally down to the arcade of Osborne (fibro-aponeurotic tissue connecting the humeral and ulnar heads of the flexor carpi ulnaris) (Fig. 5)

Post-operative management and rehabilitation

An immobilizer is provoded for comfort for the first week, and thereafter mobilization and physiotherapy are initiated. Portal stitches are removed in 2-3 weeks depending on the healing process.

References

Ballantyne GH, Moll F. The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin North Am. 2003; 83:1293-304.

Byrn JC, Schluender S, Divino CM, Conrad J,Gurland B, Shlasko E, et al. Three-dimensional imaging improves surgical performance for both novice and experienced operators using the da Vinci Robot System. Am J Surg. 2007; 193:519–22.

Gallotta V, Cicero C, Conte C, Vizzielli G, Petrillo M, Fagotti A et al. Robotic Versus Laparoscopic Staging for Early Ovarian Cancer: A Case Matched Control Study. J Minim Invasive Gynecol. 2017; 24(2):293-298.

Garcia JC. Nerve entrapment. In Liverneaux PA, Berner SH, Bednar MS, Parekattil SJ, Mantovani Ruggiero G, Selber JC (Eds). Telemicrosurgery. Springer, Paris; 2013. p.109-117

Garcia JC, Lebailly F, Mantovani G, Mendonça LA, Garcia JM and Liverneaux PA. Telerobotic Manipulation of the Brachial Plexus. J reconstr Microsurg 2012; 28(7):491-494. 

Garcia JC, Mantovani G, Gouzou S and Liverneaux P. Telerobotic anterior translocation of the ulnar nerve. Journal of Robotic Surgery. 2011; 5(2):153–156.

Garcia JC, Montero EFS. Endoscopic Robotic Decompression of the Ulnar Nerve at the Elbow. Arthroscopy Techniques. 2014; 3: 383-387.

Kavoussi LR, Moore RG, Partin AW, Bender JS, Zenilman ME, Satava, RM. Telerobotic assisted laparoscopic surgery: initial laboratory and clinical experience. Urology; 1994; 44(1): 15-9.

Melo PMP, Garcia JC, Montero EFS, Atik T, Robert EG, Facca S et al. Feasibility of an endoscopic approach to the axillary nerve and the nerve to the long head of the triceps brachii with the help of the Da Vinci Robot. Chirurgie de la Main. 2013; 32: 206-9.

Morgan JA, Thornton BA, Peacock JC, Hollingsworth KW, Smith CR, Oz MC, Argenziano M. Does robotic technology make minimally invasive cardiac surgery too expensive? A hospital cost analysis of robotic and conventional techniques. J Card Surg. 2005; 20(3):246-51.

Oldani A, Bellora P, Monni, M, Amato B, Gentilli S. Colorectal surgery in elderly patients: our experience with DaVinci Xi® System. Aging Clin Exp Res. 2017; 29(1):91-99.

Shademan A, Decker RS, Opfermann JD, Leonard SK, Axel K, Peter CW. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016; 8(337): 337ra64.

Athletic Injuries of the Elbow

Publicado em: 13 de maio de 2020 por Dr. José Carlos Garcia Jr.
Categorias: Capítulos de Livros

Wrist and Elbow Arthroscopy, 3e William B. Geissler(Ed) Chapter: Athletic Injuries of the Elbow

Authors: Jose Carlos Garcia Jr. and Alvaro Mota Cardoso Jr.

Introduction:

The elbow injuries are common in athletes, mostly those of martial arts, racket sports and overhead throwing.1-3 Each lesion will depend on the sport features and devices used to perform the athletic activity. Size, weight, material properties and additional instruments incorporated to the athletic devices are also important points to be considered.

A better treatment will depend on the biomechanics involved on each lesion and its relationship with the sport.

In this chapter an overview of the main athletic lesions at the elbow will be addressed.

 For didactic purposes the lesions will be divided by anatomic structures:  ligaments, muscles & tendons, bones & cartilage and nerves.

Ligaments:

Medial Collateral Ligament (MCL)

Overhead throwing confers considerable stretch to the elbow and can cause one of a kind tears. Biomechanical and clinical scientific papers have explained the causative variables in these tears and have permitted anticipation and treatment procedures to advance. Avoidance techniques, such as the checking of pitch counts, have been created to diminish the chance of harm in youthful competitors. 

Advancing surgical procedures have contributed to changes in strategies for treating certain conditions within the throwing competitor.

The MCL presents an utmost importance for the elbow stability. Its anterior bundle is the main stabilizer between 30º and 120º of elbow flexion, posterior bundle contributes to the stability mainly when the elbow is in a flexed position. It is responsible for 54% of valgus load resistance3.

Its tear is caused by a valgus load or during the elbow dislocation.

The MCL is the foremost clinically relevant anatomic structure within the elbow of the tossing competitor. It is composed of the anterior oblique, posterior oblique, and transverse ligaments. The anterior oblique, is the most grounded tendon of the complex and the foremost critical stabilizer to valgus load for throwers. Its origin is at the rotational center of the medial epicondyle and its ulnar insertion  expands distal to the sublime tubercle.4 The anterior oblique ligament presents an anterior  and the posterior bands, each band will have a different role in different angles to resist to the valgus stretch; the anterior band is tighter amid extension and the posterior band is tight amid flexion.

The MCL gets energetic bolster from the encompassing musculature. The flexor carpi ulnaris is the essential energetic supporter to valgus stabilization of the elbow, and the flexor digitorum superficialis could be an auxiliary stabilizer.5 These two muscles help spread the significant strengths over the elbow amid the throwing.The throwing movement makes considerable vitality and ensuing strengths that are intervened by structures near the elbow. Precise speeds as tall as 3,000°/s have been measured at the elbow amid the increasing speed stage of the throwing movement. For throwers the MCL lesion can also be part of a continuous process of attenuation resulting in a weak ligament. The ligament can become painful, reducing the throwers’ accuracy and strength, compromising performance or impeding them to play, even before a complete torn6. Elbow medial pain during the early late cocking and early acceleration phases of pitching are the most common symptoms. The moving valgus stress test can be useful for suggestion MCL involvement7. Other soft-tissue restraints as capsule and flexor-pronator musculotendinous structures play a secondary but important role preventing valgus instability during the throwing motion3.Maximal valgus load is reached in the acceleration phase within an elbow motion from 90º-120º flexion to 25º extension8. The elbow restrains structures can resist to a moment of 64N*m and medial tensile force of 290N9,10.

Since elastic properties of the MCL do not exceeds 34 N*m, the other stabilizers of the elbow are critical for dodging or minimizing damage.11

The valgus load increases stress on the others sites of the elbow: tensile forces happen on the medial side, shear and compressive stresses happen within the olecranon fossa as the elbow comes to extension, and compression forces happen laterally, basically at the radiocapitellar joint. A study found that sidelong contact increased 67% after the MCL was transected.12 Understanding these strengths increments the capacity to get it the connections among the conditions that happen around the elbow.

It is imperative to understand the point within the throwing movement which pain or discomfort happens (windup, early cocking, late cocking, acceleration, deceleration, or follow through). The sorts of pitches, the number of pitches throwed per inning and the tossing plan can also influence the athlete’s performance, therefore ought respect the individuality of each thrower. The curveball produces the most prominent valgus push at the elbow, the fastball and slider create the most noteworthy constrain, and the changeup creates less push on the elbow and is considered a generally secure pitch for competitors of all ages13.

Ordinarily, the center of the examination in a throwing competitor is on the medial elbow. A tear of the MCL ordinarily happens proximally at the medial epicondyle, and edema or elevated sensibility there or along the length of the anterior oblique ligament is seen. Stress testing of the flexor-pronator mass is done. Valgus push at 0°and 30°of flexion moreover is regularly evaluated, but the flimsiness is regularly more unobtrusive in a tossing competitor.

The sensitivity of the moving valgus stress test is reported to be 100%, with 75% specificity.14 A competitor with suspected MCL harm ought also to be evaluated for ulnar nerve pathology. Prove of nerve subluxation, a positive Tinel sign, or indications with elbow hyperflexion testing ought to be tested and noticed.

Comparative X-rays can be done with valgus stress, and its increased medial side space will strongly suggest MCL lesions.  MRI is the better exam for diagnosis once it enables one to assess many pathologies around the elbow, like osteochondritis dissecans, a MCL harm, separation of the flexor-pronator mass, and attenuation of the MCL. The signal intensity on MRI can be used to anticipate rates of healing; where patients with a total or high-grade MCL tear were most likely to require surgery.15

Ultrasonography can be an useful exam, but it lacks good scientific papers to sustain its relevance.16,17

Arthroscopy can also be used to diagnose the tears, 1 to 2mm joint line opening are related to partial tears and 4 to 10mm to full tears. The anterolateral portal is used to investigate the ulnohumeral joint, and pronated arm and elbow flexion test (65-70 degrees) is done when the scope within the articulation in order to test the ligament. The arm needs to be pronated during this test.18

Elbow lesions are some of the most prevalent in competitions of Brazilian Jiu-Jitsu and other grappling martial arts19.

The initial treatment of a MCL tear in an athlete ought to be nonsurgical. The regimen incorporates a 6-week period of rest from his athletic activities as well as fortifying of the flexor-pronator musculature.5 After this treatment for those asymptomatic and presenting no signs of MCL compromising it is suggested to optimize the sports mechanics and proprioception. For throwers late trunk turns, less shoulder external rotation and increased elbow flexion have been appeared to extend valgus stretch at the elbow.20 A 42% return-to-sport rate was detailed for overhead throwers at a mean 24.5-week follow-up.21

Surgical reconstruction of the MCL

Surgical procedures use a medial approach.

The author’s preference is medial approach through the flexor carpi ulnaris from the medial epicondyle towards the sublime tubercle of the ulna, a 7cm incision, the graft choice will depend on the exercise demands of the patient. For very strong athletes the semitendinosus graft can be used. A double band palmaris longus tendon graft can also be an option.

 There are several fixation methods such as: Figure 8 fixation, docking technique, interference screws and others.

The author’s fixation preference is by using interference screws in both, sublime tubercle of the ulna and rotational center of the humerus(Fig. 1).  This fixation is done with the elbow in varus stress and 60º of flexion. Ulnar nerve can be anteriorized if one understands it can be entrapped by the graft. Passing the graft trough a bone tunnel within the sublime tubercle of the ulna and do Just one fixation at the rotational center of the humerus using interference screw is also an option. The interference screws sizes are generally 5.5x15mm, 4.75x15mm or 4x10mmFIGURE. 1 Medial Elbow: A: Interference screw, B: Medial epicodyle, C:Tendon graftFIGURE. 2 Medial Elbow: Transosseous fixation with a bone tunnel  through the sublime tubercle and humeral fixation at the rotational center with interference screw. Hyperextension Mechanism LesionsThe most common armlock for fighters1, presented the following sequence of events:  Lesion of the teres pronator at its humeral origin, MCL and anterior capsule allowing the elbow dislocation. After dislocation the hyperextension continuity can even cause the brachial muscle torn. The continuous arm locks have led some athletes to develop a fibrosis at the antero-medial aspect of the elbow with loss of flexion on the most affected side when compared to the contralateral side. Ulnar nerve slight symptoms are frequent on these patients, probably due to this fibrosis and tension. An antero-medial tender during abrupt flexion is can be felt in many athletes, even those that does not mention any pain or difficulty for fight or daily activities. In the senior JCG author’s experience just one case needed to arthroscopically remove anterior scars. Flexo-pronator muscles are strong on these patients and even present lesion of MCL, its reconstruction is quite infrequent. Lesion of the MCL generally do not affect the sports activities of these athletes. However, if instability symptoms compromise their sports activities MCL reconstruction can be a surgical option. Valgus and FlexionMechanism LesionThis mechanism is common on the figure-four-armlock with grappling fighters. It presents the following sequence of events: Lesion of MCL followed by the medial portion of triceps. Some cases the lesion expands laterally and all thee triceps is torn. Medial and central portions of the triceps have presented better strength characteristics than the lateral part22, therefore patients presenting previous triceps tendinopathy are those in risk to present this instability. Indeed, the senior author have just seen this lesion in two situations, triceps tendinopathy and/or high energy lesions.However, the most common is that just MCL be torn, patients in this situation are not willing to underwent surgical procedure.  For patients with complete lesions of a surgical procedure to reconstruct triceps and MCL are needed. If triceps lesions are partial, treatment will depend on the instability and triceps residual strength.

Varus Posteromedial Rotatory Instability

The elbow stability has a substantial contribution from the osseous structures, it is markedly important in varus posteromedial instability. Coronoid is the main varus restrictor of the elbow. The coronoid oblique anteromedial fracture will happen when the trochlea impacts the medial coronoid. It is associated with the lateral collateral ligament lesion23. This mechanism is not so common but can be present in grappling fights due to the inverted figure-four-armlock.

The varus posteromedial rotatory instability grind test can be used for patients with this instability suspicion. Patients full abduct the arm away from the body and actively flexes and extends the arm. Crepitus and varus deformity are considered positive for this lesion24.

Depending on the coronoid fracture’s size an osteosynthesis can be necessary, it can be associated with the lateral ligament reconstruction to improve stability. Indeed, the author’s preference in high demand athletes is osteosynthesis associated with lateral collateral ulnar ligament (LCUL) reconstruction using interference screws and a palmaris longus double band.

Posterolateral-rotatory Instability of the Elbow(PLRI)

It is caused by one of the most common mechanisms of elbow dislocation, combining slight flexion, compression, valgus and supination. The first structure to be lesioned is the ulnar branch of the collateral lateral ligament. It acts as a restrictor to the posterior translation of the radial head in relationship to the capitellum25.

This ligament’s lesion will cause lateral elbow pain or even instability in valgus and supination with semi-extension of the elbow25. Some patients can also experience the posterior-lateral instability, but it is more commonly reached just under anesthesia. The posterolateral pivot-shift test, posterolateral rotatory drawer test, chair and push up apprehension can be useful for diagnosis24.

Lesion of the Ulnar Collateral Lateral Ligament is the first stage of O’Driscoll.

It is followed by anterior and posterior capsular lesion, stage two, where the distal Humerus is perched over the tip of the coronoid. The third stage is the complete elbow dislocation compromising the MCL.

History of the lateral pain after a traumatic event is common. Instability and/or pain when provocative tests are performed will give higher suspicion to this diagnosis. MRI can also give more details of the lesion.

The Osborn-Cotterill posterior impacted capitellum’s fracture will need an special attention as it can be considered for many as the elbow’s Hill-Sachs, jeopardizing this articulation stability26. In Some cases a capitellar bone repair need to be done before or with the ligament reconstruction27.Dislocation due to the PLR mechanism in sports

Traumatic falling down with elbow in semi-extension, supination, and valgus is the most important and known cause of postero-lateral-rotatory mechanism elbow dislocation. However, it can also happen on the Olympic-style weightlifting. The Olympic-style weightlifting has two different competition lifts: Snatch and the clean and jerk. The arm begins in full pronation for both lifts.

Snatch presents six phases with the following sequence of six events:  first pull, transition from the first to the second pull, the second pull, turnover under the barbell, the catch phase, rising from the squat position.28

During the catch phase there are combined movements on the scapular girdle and shoulder that will need an elbow supination to correct the shoulder external rotation. The catch is done with the barbell in a superior and slight posterior position in relation to the shoulder axis. In this position the elbow will be in a semi-extension position and loaded in valgus. These combinations of movements valgus, supination, semi-extension with excessive compressive load will produce the posterior-lateral-rotatory mechanism. Therefore, elbow dislocation can take place.

Clean and Jerk presents the two phases. During the Jerk phase a catch similar to the described for the snatch is also done, with same upper-limb characteristics.29

The author’s preference for LCUL reconstruction is by using the Kocher’s approach. The graft of choice is the palmaris longus in a double band configuration. Fixation on the supinator crest and humeral rotational center is done using interference screws(Fig. 3).

FIG. 3 A:Capitellum, B:Interference screw of the humerus, C: Double band Palmaris Longus autograft, D: Radial head, E: Interference Screw of the Ulna on the supinator crest

Nerve Entrapment Syndromes

Nerve entrapment are multifactorial, it can be associated with fibrous bands, androgen steroids abuse, trauma, deformities and repetitive movements. Some of these situations will be pushed by athletic activities to the limit, compromising neurologic and even vascular structures. Movements involved in each sport need to be considered for diagnosing these conditions. Many times, correcting the sports gesture and adequate use of the sportive devices can be the initial treatment for almost all neurologic conditions associated with sports.

Posterior Interosseous Nerve

The posterior interosseous nerve syndrome is also known as resistant tennis elbow. Indeed, it is sometimes difficult to reach the diagnosis, once this is a motor nerve and no paresthesia is associated to its entrapment syndrome. The pain is slightly anterior and distal to the lateral epicondyle. It is associated with supination movements. Resisted supination causes pain markedly with the flexed instead of extended elbow. Therapeutic tests using neurotropic medications as pregabalin can be more useful than electromyographic studies, once better peripheral neuropathic pain control have been achieved by using pregabalin30. Even the dynamic electromyographic studies presenting high specificity and positive predictive values, they do not present sensibility and negative predictive values enough to achieve the diagnosis.

Movements beginning from pronation and accelerating in forced supination as some racket sports players do can cause this compression. In these cases one will need to improve the sports gesture with a better balance of the shoulder movement, avoiding the overuse of forearm pronation and supination. Some sports that use the hand grip associated with forearm supination as Jiu-Jitsu can also present this entrapment.

Clinical treatment is based on physiotherapeutic myofascial release, stretching, soft tissue-based management. Corticosteroid and NSAIDs will can reduce local inflammation and swelling around the nerve. The author also highly recommends the use of pregabalin for treating pain associated with posterior interosseous nerve syndrome.

In refractory cases surgical release will need to take place. One need to be sure the entrapment is just in the interosseous posterior nerve, if symptoms involve also the sensitive radial nerve, other possible compression regions as the lateral head of triceps to the anterior elbow. Some cases of high bifurcation will also require an approach in the arm 4-5cm from the lateral epicondyle

When conservative treatment fails or the recurrence is unacceptable the surgical procedure is necessary.

In these cases an anterior approach on the medial border of the brachioradialis is done(Fig 4). The sensitive radial nerve is easily found, any vascular alterations as recurrent vascular artery, fibrous bands, bursa and synovia need to be removed, if compressing the nerve.

FIG. 4 A:Sensitive Radial Nerve, B: Posterior Interosseous Nerve, C: Radial Nerve

The Fröse arcade and supinator are the most common compression site and their release is strongly recommended. (Fig. 5)

FIG.5 A: Fröse Arch, B: Posterior Interosseous Nerve, C: Sensitive Radial Nerve

Musculocutaneous Nerve

On the elbow the lateral antebrachial cutaneous nerve, a sensitive branch of the musculocutaneous nerve rises between the lateral margin of the biceps tendon and the brachialis muscle aponeurosis. An entrapment in this region is not common, many times it is due the mechanism of resisted pronation and elbow flexion.31

The anterolateral pain or paresthesia can be increas by direct pressure over the compression area or in forced flexion with pronated elbow.

Avoiding biceps training with the forearm pronated and full extension during the at least during the treatment are required measures. Stopping anabolic drugs abuse, for users, is also necessary. Non-surgical management with medicines and physical therapy is the standard for treating this pathology.

For refractory cases a release is an option. The author preference is from antecubital fossae to proximal just lateral to the biceps. Soft tissues around the nerve and scar release associated with facial release of the brachialis are necessary (Fig. 6), sometimes even a biceps triangular excision at the compression site are required.

FIG. 6 A: Musculocutaneous nerve

The author didn’t found this biceps excision required in his experience, however every case needs to be evaluated and just the surgeon will can customize the treatment to the real necessities of every patient.

Ulnar

Ulnar nerve is located medial and posterior to the rotational center. These characteristics make this nerve mainly sensitive to valgus and flexion movements.

The repetition microtrauma on throwing sports with high varus moment can cause both, lesion or attenuation of the MCL. For both the valgus will can promote an ulnar nerve stretch compromising it. Other conditions such as anconeus epitrochlearis can also be cause of ulnar nerve entrapment, mainly in patients which sports will cause muscular hypertrophy. One needs to take attention to actually understand the correct site of compression, once the ulnar nerve can be compressed from the Strüthers arcade in the arm to the Guyon canal in the wrist. The Tinel test can be useful to elucidate the compression area. As the cubital tunnel is externally located in relationship with the rotational elbow center, the elbow flexion will tend to tension the nerve. Indeed intraneural pression can increase seven fold with the elbow flexion. Thus in cases of cubital tunnel syndrome the elbow flexion during 30 seconds will can reproduce paresthesia in the ulnar nerve’s autogenous area, medial part of the fourth finger and all the fiftieth finger.

Non-surgical management with medicines and physical therapy is the standard for treating this pathology in the beginning, surgical treatment is the next step when conservative treatment fails.

Entrapments that are secondary to other conditions will need treat their primary cause associated with a release or anteriorization of the ulnar nerve.

For pathologies of the cubital tunnel the best surgical option remains questionable, release or anteriorization have achieved similar effectiveness and safety.32 Patients that have trend to nerve instability before surgery or those with secondary entrapments are better candidates for anterior transposition in the authors opinion.

Author preferred treatment:

The nerve release can be done by open or endoscopic procedures. It I important that the release extends from the Strüthers ach to the Osborn’s arch. The endoscopic release is recommended in elbows with no previous surgery, therefore with no previous scar tissue.

For elbows with potential scars an open or robotic endoscopic release are options (Fig. 7)33. In the author’s opinion endoscopic releases will present advantages mainly in less scar formation and less inflammatory reactions.

FIG. 7 Setup of the DaVinci® Robot on the operative field.MedianThe median nerve compression is not usual being more related to anatomic variations such as Gantzer muscle, palmaris profundus, flexor carpi radialis brevis, variations of the lacertus fibrosus, supracondylar process, vascular perforation and muscular variations.24Some of these anatomical variations associated with overuse can be responsible by the nerve entrapment. Initial assessment includes physical examination and X-Ray studies. The electromyographic study will present many times negative results because this is essentially a dynamic condition. Physical exam will generally be responsible to identify the correct entrapment site. Compression by the following structures are highly suggested in presence paresthesia in the median region as follows:Lacertus fibrosus: Elbow resisted flexion.Teres pronator: Forearm resisted pronation.Flexor digitorum superficialis’ arch: Proximal interphalangeal resisted flexion.The author suggests duration of each test of 30 seconds in order to better evaluate each possible compression site.Authors preferred treatment: An antero-medial approach following the medial border of the teres pronator is done 3 to 4cm anterior to the medial epicondyle. The first structure to be found and released is the Lacertus fibrosus. In sequence one can identify near the cubital fossae the median nerve with the surrounded vascular structures. Nerve will generally pass through flexor mass in a intermuscular plan. Anatomical muscular variations can be cause of compression and their release is required (Fig. 8). The nerve is followed until it enters into the flexor digitorum superficialis’ arch. This ach can be also released if one considers it can be an entrapment site. (Fig. 9).

FIG. 8 A: Median Nerve, B: Anomalous Teres Pronator, C: Released Teres Pronator

FIG. 9 A: Median Nerve, B: Anomalous Flexor Digitorum Superficialis Arch

Muscle and tendons:

Chronic Exertional Compartment Syndrome(CECS), the “Arm pump”

This condition can be suspected in patients with pain, commonly at the flexor mass, with worsen during activities that will require strength for gripping.

It is not an uncommon condition in competitive motorcycling, gymnastics, climbing, rowers, hockey, water skiing, kayaking and wheelchair athletics.34

Different degrees of compartmental syndrome will require different treatments, from rest and NSAIDs until surgical procedures. Its suspicion is suggested in presence of the forearm pain, loss of grip strength and some paresthesia. These symptoms are just present during activities. Rises of 10mmHg on intracompartmental  monitoring after exercise will confirm the diagnosis.35

Open or endoscopic fascial release are surgical options to treat these patients.36

Triceps:

Lesions of triceps are rare, less than 1% of tendon lesions37. The typical lesion is avulsion from the olecranum 90%, males with 40-50 years old. They are more alike to happen in patients with triceps tendinopathies or previous partial lesions.  The mechanism is eccentric contraction in maximum elongation of the muscle24. Changes on the tendon’s architecture such as dehydration can make this structure stiffer and with an elastic module bigger. It will have a negative effect on energy dissipation, and the tendon can be easier torn.

When the triceps tendon is torn a posterior deformity in the arm is apparent, whit bruise and loss of elbow extension strength38.

The “fleck sign” is common to be present in X-Ray exams, if there is some bone detachment, however many times just a tendinous lesion takes place. Therefore, mostly of times it is necessary to use grafts because of poor tendon’s quality and/or retraction.  

Treatment need to be personalized, if retractions are important and it is not possible to return the tendon to its original insertion two strategies can be used:

1)    Fasciotomy similar to Vulpius technique. This is not recommended if the surgeon does not use to do similar techniques. It is also not recommended for more than 5cm distances with elbow at 90º.(Fig. 10)

2)    My personal preference in large lesions is a triple autologous semitendinous graft from the patient’s knee. The graft passes through the olecranon by a bone tunnel and through the muscle just proximal to its myotendinous transition in a O figure. When possible an additional tendon reinforcement is done by inserting remaining tendon into the olecranum tip in a triple semitendinous band, Ø figure(Fig. 11).

3)    The use of cadaveric Achilles tendon graft can also be an option that can easily fits on the triceps.

4)    In some special cases for very high demand athletes where it is possible to reinsert the triceps one can make a reinforce in O figure by using the palmaris longus associated with the triceps insertion.

A cast in semi extension can be used in the first three weeks in order to better protect the sutures, passive movements will begin two weeks after the surgery. Three weeks after the surgery active movements can begin with no strength.

FIG. 10  A: Ulnar Nerve, B: Olecranum, C: Triceps tendon and Fascia

FIG. 11  A: Olecranum, B: Triceps tendon and Fascia, C: Semitedinosus Grafts

 Biceps

Distal biceps lesions are becoming more common with time, presenting an incidence of 5:100,000 persons/year 39. The short head of biceps inserts ulnar and distally to the long head. Lacertos fibrosus is originated from the short head of biceps40. When this structure remains intact it can prevent biceps retractions, making the clinical examination not so obvious. Eccentric load in a semi flexed elbow or a biceps contraction with elbow is forced to extends are the most common mechanisms41.

Clinical presentation is an antecubital and cubital bruise with muscular retraction, pain and weakness for flexion and supination. An anterior cordlike absence on the affected elbow is also a sign.

Non-surgical treatment can be considered in cases of elderlies, low demand patients or those with no clinical conditions that will accept the arm deformity.

In athletes the surgical procedure is highly recommended.

The tendon on the bicipital tubercle can be done by two-incision or anterior approaches. The author’s preference is two-incision approach by using trans osseous fixation, however the single-incision using endobutton can also be a good option (Fig. 12). Other fixation options are not the author’s preference but also need be considered.

In chronic lesions with retractions the use of graft is recommended(Fig. 13), but additional complications as the closure of the biceps tunnel between the radius and ulna need to be considered. The only temporary radial nerve transitory palsy the author has faced was a grafted double approach.

FIG. 12: Bone tunnels in the medial approach for transosseous  distal biceps reconstruction.

FIG. 13 A: Biceps, B: Semitendinosus Graft

Our Institute experience is by reconstructing more than 100 distal biceps in the last 10 years. Our best results were in two-incision approach by using transosseous fixation and single-incision using endobutton. For chronic with graft the two-incision approach was used for almost all patients.

A cast in 90º flexion can be used in the first week in order to better protect the sutures, passive movements will begin in the following week a sling is used. Just passive movements are allowed the second week after the surgery. In the third week after the surgery active movements can begin with no strength.

Return to the gym with 50% of the loads is allowed 3 months after surgery. 100% of the load is permitted five months after surgery.

An endoscopic approach was recently described using suture anchors.

Lateral epicondylitis 

Lateral epicondylitis could be a common source of pain on the sidelong of the elbow. This tendinopathy has a rate of 1.3 % within the population between 30 and 64 years with a peak between 45 and 54.42

It ordinarily influences the prevailing upper extremity and is related with a repetitive and forceful movements.43 

In spite of the fact that the lateral epicondylitis is commonly known as tennis elbow, this term isn’t totally adjusted. This tendinopathy is regularly work related and happens in patients not playing tennis44; in any case, it has been assessed that 10–50 % of individuals who frequently play tennis. 45 Epicondylitis is more common in male than female tennis players, unlike what happens within the common population. Lateral epicondylitis is more common than medial-sided elbow pain, with proportions allegedly extending from 4:1 to 7:1.46 Dominant elbow is commonly included. Intense onsets of symptoms happen more regularly in youthful competitors.

To better understand the etiology of this tendinopathy, it is basic to analyze the anatomic connections of the lateral compartment of the elbow. There are connections that exist between the extensor carpi radialis longus (ECL) and extensor carpi radialis brevis (ECRB).47 The extensor carpi radialis longus (ECRL) origin is muscular along the lateral supracondylar edge of the humerus. The shape of the muscle is triangular, with the summit situated proximally. Indeed, the origin of the ECRB is completely tendinous. The origin of the ECRB is found fair underneath the distal-most tip of the lateral supracondylar edge. The footprint of the tendon has a diamond shape of almost 13 × 7 mm.

Biomechanical investigation has appeared that eccentric compressions of the extensor carpi radialis brevis (ECRB) muscle amid backhand tennis swings are the cause of dreary microtraumas that result in microtears within the origin of the ligament.48 Different causes like trauma within the lateral region of the elbow or relative hypovascularity, fluoroquinolone anti-microbials, and anatomic inclination.49-51

Subsequently, many have shown the nature of the pathology is actually a degenerative tendinopathy. Macroscopic tearing in affiliation with the histological findings was depicted52. Nirschl called these histological changes “angiofibroblastic hyperplasia”53-54. In his ponder, the famous gray friable tissue characterized by disorganized collagen arrangement with juvenile fibroblastic and vascular components.

In this way, expanded rates of apoptosis and cellular autophagy have been observed in tenocytes, coming about in disruption of extracellular collagen matrix and weakening of the tendon55. These changes at the tendon’s origin are the pathologic mending reaction to microtears caused by repetitive eccentric or concentric over-burdening of the extensor muscle mass56. The origin of the extensor digitorum communis (EDC) is additionally involved in lateral epicondylitis.57,58

Patients complain of pain that emanates from the lateral epicondyle down to the lower arm, frequently related with weakness and dificulties within the handgrip. Physical examination ought to start with cervical spine and be taken after by the whole upper extremity. The examination continues at that point to the elbow. The elbow is delicate over the lateral epicondyle and somewhat distal, into the extensor mass.

Cozen active maneuver (resisted wrist extension with the elbow in full extension and forearm in pronation) and Mills passive maneuver (maximal wrist flexion with the elbow in full extension and forearm in pronation) can worsen pain at the lateral epicondyle. The first maneuver causes agonizing eccentric contraction at the origin of the ECRB. The second maneuver places the ECRB on maximal extend, latently tensioning the muscle origin and in this way causing pain. In arrange to avoid the nearness of a plica, the elbow must be flexed latently with the lower arm pronated and supinated. In the event that a plica is included, the point of maximal delicacy is ordinarily found more distally and posteriorly, over the radiocapitellar joint, compared to lateral epicondylitis. Other causes of lateral sided elbow pain can be nerve entrapments at one or more destinations, such as radial tunnel disorder or posterior interosseous nerve (PIN) disorder. Up to 5 % of patients with lateral epicondylitis presents radial nerve entrapment.59

Pain evoked with resisted supination with elbow flexion or with the resisted long-finger extension (when the nerve is caught at the ECRB) can show PIN entrapment. Differential diagnosis for atraumatic lateral elbow pain may incorporate radicular cervical spine illness, radial nerve compression, intra-articular free bodies, and chondral injuries. Tumors, avascular necrosis, and osteochondritis dissecans of the capitellum, indeed on the off chance that less common, may be considered as well.

Imaging can be performed as well. Ultrasound is additionally valuable. Frequently times in the event that no tendon changes counting neovascularization, thinning, thickening or tears are distinguished on ultrasound at that point an alternate conclusion ought to be looked for. MRI is frequently utilized to clarify anatomic pathology including edema within the ERCB tendon, tendinopathic changes.

A really tall recovery rate can be anticipated with classic non-operative treatment, which incorporates the following physical and recovery modalities:

Activity Adjustment, Rest, Ice 

These modalities are the beginning treatment of any case of lateral epicondylopathy. The competitor ought to diminish their load intensity when side effects show with early treatment and fitting time to recuperating. The volume of training counting recurrence and intensity ought to be carefully observed and controlled on the competitor’s return to court. Alterations to the way the competitor plays the game of tennis can incorporate things such as two fisted compared to a single fisted backhand, a more adaptable or stun retentive racquet design, lower string pressure, selecting a slower court surface, broader racquets as well as adjust to a bigger grip.

Counterforce braces act to diminish the drive on the extensor mechanism. They are outlined to be put on the arm distal to the region of tendinopathy with the objective of moving the loading location on the tendon.

Prolotherapy is a treatment that involves the injection of sclerosing agents (mainly dextrosis) into an area of painful tendinosis or osteoarthritis. It’s cheap and useful for early stages of the pathology.

Coricosteroid injection has classically been one of the staples of treatment for lateral epicondylopathy. Short term is a nice option, but the results start to fade fast. Ultimately it shows up that the dangers of injection, counting tendon tear, failure, and muscle atrophy, don’t outweigh the long-term benefits, however it remains a short-term option. One needs to avoid more than 2 or 3 shots for each elbow for life.

Randomized trials have also presented worst outcomes at one year for steroid injected patients versus placebo, and no difference between corticosteroids and physical therapy.